Abstract
We derive upper bounds for Hilbert–Schmidt’s quantum coherence of general states of a d-level quantum system, a qudit, in terms of its incoherent uncertainty, with the latter quantified using the linear and von Neumann’s entropies of the corresponding closest incoherent state. Similar bounds are obtained for Wigner–Yanase’s coherence. The reported inequalities are also given as coherence–populations trade-off relations. As an application example of these inequalities, we derive quantitative wave–particle duality relations for multi-slit interferometry. Our framework leads to the identification of predictability measures complementary to Hilbert–Schmidt’s, Wigner–Yanase’s, and \(l_{1}\)-norm quantum coherences. The quantifiers reported here for the wave and particle aspects of a quanton follow directly from the defining properties of the quantum density matrix (i.e., semi-positivity and unit trace), contrasting thus with most related results from the literature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Fallani, L., Kastberg, A.: Cold atoms: a field enabled by light. EPL 110, 53001 (2015)
Simmons, M.: A new horizon for quantum information. npj Quantum Inf. 1, 15013 (2015)
Pirandola, S., Braunstein, S.L.: Physics: unite to build a quantum Internet. Nat. News 532, 169 (2016)
Schleier-Smith, M.: Editorial: hybridizing quantum physics and engineering. Phys. Rev. Lett. 117, 100001 (2016)
Institute of Physics Publications, The age of the qubit, (2011)
Fitzsimons, J., Rieffel, F.E.G., Scarani, V.: The quantum Frontier. arXiv:1206.0785
Adesso, G., Franco, R.L., Parigi, V.: Foundations of quantum mechanics and their impact on contemporary society. Philos. Trans. R. Soc. A 376, 20180112 (2018)
Stuhler, J.: Quantum optics route to market. Nat. Phys. 11, 293 (2015)
Preskill, J.: Quantum information and physics: some future directions. J. Mod. Opt. 47, 127 (2000)
Cowen, R.: The quantum source of space-time. Nature 527, 290 (2015)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)
Popescu, S.: Bell’s inequalities versus teleportation: What is nonlocality? Phys. Rev. Lett. 72, 797 (1994)
Cavalcanti, P.S.D., Šupić, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)
Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301(R) (2012)
Schnabel, R.: Squeezed states of light and their applications in laser interferometers. Phys. Rep. 684, 1 (2017)
Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)
Howard, M., Wallman, J.J., Veitch, V., Emerson, J.: Contextuality supplies the magic for quantum computation. Nature 510, 351 (2014)
Shi, H.-L., Liu, S.-Y., Wang, X.-H., Yang, W.-L., Yang, Z.-Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)
Theurer, T., Killoran, N., Egloff, D., Plenio, M.B.: Resource theory of superposition. Phys. Rev. Lett. 119, 230401 (2017)
Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)
von Prillwitz, K., Rudnicki, L., Mintert, F.: Contrast in multipath interference and quantum coherence. Phys. Rev. A 92, 052114 (2015)
Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Chitambar, E., Ma, X., Streltsov, A.: Preface: quantum coherence. J. Phys. A Math. Theor. 51, 410301 (2018)
Messiah, A.: Quantum Mechanics. Dover, New York (2014)
Fano, U.: Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74 (1957)
Wilde, M.: Quantum Information Theory. Cambridge University Press, New York (2013)
Maziero, J.: Hilbert–Schmidt quantum coherence in multi-qudit systems. Quantum Inf. Process. 16, 274 (2017)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Yu, C.-S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)
Puchała, Z., Rudnicki, Ł., Chabuda, K., Paraniak, M., Życzkowski, K.: Certainty relations, mutual entanglement and non-displacable manifolds. Phys. Rev. A 92, 032109 (2015)
Korzekwa, K., Lostaglio, M., Jennings, D., Rudolph, T.: Quantum and classical entropic uncertainty relations. Phys. Rev. A 89, 042122 (2014)
Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)
Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)
Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101 (2015)
Liu, F., Li, F., Chen, J., Xing, W.: Uncertainty-like relations of the relative entropy of coherence. Quantum Inf. Process. 15, 3459 (2016)
Pessoa Jr., O.: Conceitos de Física Quântica. Editora Livraria da Física, São Paulo (2006)
Qureshi, T.: Coherence, interference and visibility. Quanta 8, 24 (2019)
Dürr, S.: Quantitative wave-particle duality in multibeam interferometers. Phys. Rev. A 64, 042113 (2001)
Englert, B.-G., Kaszlikowski, D., Kwek, L.C., Chee, W.H.: Wave-particle duality in multi-path interferometers: general concepts and three-path interferometers. Int. J. Quantum Inf. 6, 129 (2008)
Mishra, S., Venugopalan, A., Qureshi, T.: Decoherence and visibility enhancement in multi-path interference. Phys. Rev. A 100, 042122 (2019)
Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A Math. Theor. 41, 235303 (2008)
Kuttler, K.: Elementary Linear Algebra. Saylor Foundation, Washington, DC (2012)
Avendaño, M.: Descartes’ rule of signs is exact!. J. Algebra 324, 2884 (2010)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Ledoux, M.: The Concentration of Measure Phenomenon. American Mathematical Society, Providence (2001)
Maziero, J.: Random sampling of quantum states: a survey of methods. Braz. J. Phys. 45, 575 (2015)
Maziero, J.: Fortran code for generating random probability vectors, unitaries, and quantum states. Front. ICT 3, 4 (2016)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)
Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)
Hiroshima, T., Ishizaka, S.: Local and nonlocal properties of Werner states. Phys. Rev. A 62, 044302 (2000)
Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Nat. Acad. Sci. USA 49, 910 (1963)
Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)
Kammerlander, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016)
Streltsov, A., Chitambar, E., Rana, S., Bera, M.N., Winter, A., Lewenstein, M.: Entanglement and coherence in quantum state merging. Phys. Rev. Lett. 116, 240405 (2016)
Yu, C., Yang, S., Guo, B.: Total quantum coherence and its applications. Quantum Inf. Process. 15, 3773 (2016)
Yuan, X., Liu, K., Xu, Y., Wang, W., Ma, Y., Zhang, F., Yan, Z., Vijay, R., Sun, L., Ma, X.: Experimental quantum randomness processing. Phys. Rev. Lett. 117, 010502 (2016)
Giorda, P., Allegra, M.: Coherence in quantum estimation. J. Phys. A Math. Theor. 51, 025302 (2018)
Zhang, F.-L., Wang, T.: Intrinsic coherence in assisted sub-state discrimination. EPL 117, 10013 (2017)
Pozzobom, M.B., Maziero, J.: Environment-induced quantum coherence spreading of a qubit. Ann. Phys. 377, 243 (2017)
Buruaga, D.N.S., Sabín, C.: Quantum coherence in the dynamical Casimir effect. Phys. Rev. A 95, 022307 (2017)
Li, L., Zou, J., Li, H., Li, J.-G., Wang, Y.-M., Shao, B.: Controlling energy flux into a spatially correlated environment via quantum coherence. Eur. Phys. J. D 71, 62 (2017)
Brandner, K., Bauer, M., Seifert, U.: Universal coherence-induced power losses of quantum heat engines in linear response. Phys. Rev. Lett. 119, 170602 (2017)
Scholes, G.D., Fleming, G.R., Chen, L.X., Aspuru-Guzik, A., Buchleitner, A., Coker, D.F., Engel, G.S., van Grondelle, R., Ishizaki, A., Jonas, D.M., Lundeen, J.S., McCusker, J.K., Mukamel, S., Ogilvie, J.P., Olaya-Castro, A., Ratner, M.A., Spano, F.C., Whaley, K.B., Zhu, X.: Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647 (2017)
Bengtson, C., Sjöqvist, E.: The role of quantum coherence in dimer and trimer excitation energy transfer. New J. Phys. 19, 113015 (2017)
Pinto, D.F., Maziero, J.: Entanglement production by the magnetic dipolar interaction dynamics. Quantum Inf. Proc. 17, 253 (2018)
Southwell, K.: Quantum coherence. Nature 453, 1003 (2008)
Li, F., Bao, W.-S., Zhang, S., Huang, H., Li, T., Wang, X., Fu, X.: Role of coherence in adiabatic search algorithms. Phys. Lett. A 382, 2709 (2018)
Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)
Kimura, G.: The Bloch vector for N-level systems. Phys. Lett. A 314, 339 (2003)
Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)
Brandão, F.G.S.L., Gour, G.: The general structure of quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)
Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)
Huber, M., Perarnau-Llobet, M., Hovhannisyan, K.V., Skrzypczyk, P., Klöckl, C., Brunner, N., Acín, A.: Thermodynamic cost of creating correlations. New J. Phys. 17, 065008 (2015)
Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics—a topical review. J. Phys. A Math. Theor. 49, 143001 (2016)
Anders, J., Esposito, M.: Focus on quantum thermodynamics. New J. Phys. 19, 010201 (2017)
Lostaglio, M.: An introductory review of the resource theory approach to thermodynamics. Rep. Prog. Phys. 82, 114001 (2019)
Acknowledgements
This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), process 88882.427924/2019-01, by the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and by the Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 465469/2014-0.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Basso, M.L.W., Chrysosthemos, D.S.S. & Maziero, J. Quantitative wave–particle duality relations from the density matrix properties. Quantum Inf Process 19, 254 (2020). https://doi.org/10.1007/s11128-020-02753-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02753-y