Properties of operator systems, corresponding to channels | Quantum Information Processing Skip to main content

Advertisement

Log in

Properties of operator systems, corresponding to channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It was shown in Duan (Super-activation of zero-error capacity of noisy quantum channels, 2009. arXiv:0906.2527), that in finite-dimensional Hilbert spaces each operator system corresponds to some channel, for which this operator system will be an operator graph. This work is devoted to finding necessary and sufficient conditions for this property to hold in infinite-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Amosov, G.: On operator systems generated by reducible projective unitary representations ofcompact groups. Turk. J. Math. 43, 2366–2370 (2019). https://doi.org/10.3906/mat-1906-59

    Article  MathSciNet  MATH  Google Scholar 

  2. Amosov, G.G.: On general properties of non-commutative operator graphs. Lobachev. J. Math. 39(3), 304–308 (2018). https://doi.org/10.1134/S1995080218030095

    Article  MathSciNet  MATH  Google Scholar 

  3. Amosov, G.G., Mokeev, A.S.: On construction of anticliques for noncommutative operator graphs. J. Math. Sci. 234(3), 269–275 (2018). https://doi.org/10.1007/s10958-018-4002-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Amosov, G.G., Mokeev, A.S.: On non-commutative operator graphs generated by covariant resolutions of identity. Quantum Inf. Process. 17(12), 325 (2018). https://doi.org/10.1007/s11128-018-2072-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Amosov, G.G., Mokeev, A.S.: On linear structure of non-commutative operator graphs. Lobachev. J. Math. 40(10), 1440–1443 (2019). https://doi.org/10.1134/S1995080219100032

    Article  MathSciNet  MATH  Google Scholar 

  6. Cameron, P.J., Montanaro, A., Newman, M.W., Severini, S., Winter, A.: On the quantum chromatic number of a graph. arXiv e-prints quant-ph/0608016 (2006)

  7. Choi, M.D., Effros, E.G.: Injectivity and operator spaces. J. Funct. Anal. 24(2), 156–209 (1977). https://doi.org/10.1016/0022-1236(77)90052-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Cubitt, T.S., Chen, J., Harrow, A.W.: Superactivation of the asymptotic zero-error classical capacity of a quantum channel. arXiv e-prints arXiv:0906.2547 (2009)

  9. Dosi, A.: Operator hilbert systems. Funct. Anal. Appl. 53(2), 143–148 (2019). https://doi.org/10.1134/S0016266319020096

    Article  MathSciNet  MATH  Google Scholar 

  10. Duan, R.: Super-activation of zero-error capacity of noisy quantum channels. arXiv e-prints arXiv:0906.2527 (2009)

  11. Duan, R., Severini, S., Winter, A.: Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function. arXiv e-prints arXiv:1002.2514 (2010)

  12. Holevo, A.: Quantum systems, channels, information: a mathematical introduction. De Gruyter studies in mathematical physics. De Gruyter (2012)

  13. Holevo, A.S.: Complementary channels and the additivity problem. Theory Probab. Appl. 51(1), 92–100 (2007). https://doi.org/10.1137/S0040585X97982244

    Article  MathSciNet  MATH  Google Scholar 

  14. Medeiros, R.A.C., de Assis, F.M.: Zero-error capacity of a quantum channel, pp. 100–105 (2004)

  15. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  16. Shannon, C.: The zero error capacity of a noisy channel. IRE Trans. Inf. Theory 2(3), 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  17. Shirokov, M.E., Shulman, T.: On superactivation of one-shot zero-error quantum capacity and the related property of quantum measurements. arXiv e-prints arXiv:1312.3586 (2013)

  18. Takesaki, M.: Theory of operator algebras I. Encyclopaedia of mathematical sciences. Springer, Berlin (2001). https://books.google.co.uk/books?id=dTnq4hjjtgMC

  19. Weaver, N.: Quantum graphs as quantum relations. arXiv e-prints arXiv:1506.03892 (2015)

  20. Weaver, N.: A “quantum” ramsey theorem for operator systems. Proc. Am. Math. Soc. 145(11), 4595–4605 (2017). https://doi.org/10.1090/proc/13606

    Article  MathSciNet  MATH  Google Scholar 

  21. Weaver, N.: The “quantum” turan problem for operator systems. Pac. J. Math. (2018). https://doi.org/10.2140/pjm.2019.301.335

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to G.G.Amosov for useful discussion and comments. The work is supported by Russian Science Foundation under the Grant No. 19-11-00086 and performed in Steklov Mathematical Institute of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yashin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by Russian Science Foundation under the Grant No. 19-11-00086.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashin, V.I. Properties of operator systems, corresponding to channels. Quantum Inf Process 19, 195 (2020). https://doi.org/10.1007/s11128-020-02693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02693-7

Keywords

Navigation