Abstract
Cloning an unknown state is an important task in the field of quantum computation as it is one of the basic operations required in any experiment. The no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown quantum state. Hence, techniques are developed to clone unknown states to high fidelities, rather than to exact copies. The usual method of cloning is quantum tomography, which measures a set of observables to reconstruct the unknown state. This method proves to be very expensive when the number of copies of the unknown state is limited. Here, we try to clone an unknown state in IBM’s QASM simulator using a quantum reinforcement learning protocol (Albarran-Arriagada et al. in Phys Rev A 98:042315, 2018), where the “right” amount of punishment/reward function and boundary conditions can give much better fidelity than what tomography can offer in limited copies of the state. Using this method, we can attain above 90% fidelity in under 50 copies. This method proves to be very useful for reconstructing quantum states when only limited copies of the state are available.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chouard, T., Venema, L.: Machine intelligence. Nature 521, 435 (2015)
Stajic, J., Stone, R., Chin, G., Wible, B.: Rise of the machines. Science 349, 248 (2015)
Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484 (2016)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, New York (1995)
Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach. Springer, Berlin (2013)
Jordan, M.I., Mitchel, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255 (2015)
Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, OSDI’16, pp. 265–283 (2016)
Pepper, A., Tischler, N., Pryde, G.J.: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning. Phys. Rev. Lett. 122, 060501 (2019)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85 (2015)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT, Cambridge (1998)
Littman, M.L.: Reinforcement learning improves behaviour from evaluative feedback. Nature 521, 445 (2015)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529 (2015)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2010)
Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56, 172 (2014)
Aimeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90, 261 (2013)
Adcock, J., Allen, E., Day, M, Frick, S., Hinchliff, J., Johnson, M., Morley-Short, S., Pallister, S., Price, A., Stanisic, S.: Advances in quantum machine learning. arXiv:1512.02900
Biswas, R., Jiang, Z., Kechezhi, K., Knysh, S., Mandra, S., O’Gorman, B., Perdomo-Ortiz, A., Petukhov, A., Realpe-G’omez, J., Rieffel, E., Venturelli, D., Vasko, F., Wang, Z.: A NASA perspective on quantum computing: opportunities and challenges. Parallel Comput. 64, 81 (2016)
Dong, D., Chen, C., Li, H., Tarn, T.-J.: Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. B Cybern. 38, 1207 (2008)
Paparo, G.D., Dunjko, V., Makmal, A., Martin-Delgado, M.A., Briegel, H.J.: Quantum speedup for active learning agents. Phys. Rev. X 4, 031002 (2014)
Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016)
IBM Quantum Experience. https://quantumexperience.ng.bluemix.net/qx/experience
Gangopadhyay, S., Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch-Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)
Coles, P.J., et al.: Quantum algorithm implementations for beginners. arXiv:1804.03719
Cervera-Lierta, A.: Exact Ising model simulation on a quantum computer. Quantum 2, 114 (2018)
Zhukov, A.A., Remizov, S.V., Pogosov, W.V., Lozovik, Y.E.: Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Inf. Process. 17, 223 (2018)
Viyuela, O., Rivas, A., Gasparinetti, S., Wallraff, A., Filipp, S., Martin-Delgado, M.A.: Observation of topological Uhlmann phases with superconducting qubits. npj Quantum Inf. 4, 10 (2018)
Kapil, M., Behera, B.K., Panigrahi, P.K.: Quantum simulation of Klein Gordon equation and observation of Klein Paradox in IBM quantum computer. arXiv:1807.00521
Hegade, N.N., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of quantum tunneling in IBM Quantum computer. arXiv:1712.07326
Fedortchenko, S.: A quantum teleportation experiment for undergraduate students. arXiv:1607.02398
Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)
Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)
Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)
Singh, R.K., Panda, B., Behera, B.K., Panigrahi, P.K.: Demonstration of a general fault-tolerant quantum error detection code for (2n+1)-qubit entangled state on IBM 16-qubit quantum computer. arXiv:1807.02883
Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum artificial life in an IBM quantum computer. Sci. Rep. 8, 14793 (2018)
Zhao, Z., Pozas-Kerstjens, A., Rebentrost, P., Wittek, P.: Bayesian deep learning on a quantum computer. arXiv:1806.11463
Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving Sudoku game using a hybrid classical-quantum algorithm. Europhys. Lett. 128, 40007 (2019)
Mahanti, S., Das, S., Behera, B.K., Panigrahi, P.K.: Quantum robots can fly; play games: an IBM quantum experience. Quantum Inf. Process. 18, 219 (2019)
Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient quantum algorithm for solving travelling salesman problem: an IBM quantum experience. arXiv:1805.10928
Dash, A., Sarmah, D., Behera, B.K., Panigrahi, P.K.: Exact search algorithm to factorize large biprimes and a triprime on IBM quantum computer. arXiv:1805.10478
Zhang, X., Xiang, H., Xiang, T., Fu, L., Sang, J.: An efficient quantum circuits optimizing scheme compared with QISKit. arXiv:1807.01703
Dueck, G.W., Pathak, A., Rahman, M.M., Shukla, A., Banerjee, A.: Optimization of circuits for IBM’s five-qubit quantum computers. In: 21st Euromicro Conference on Digital System Design, pp. 680–684. Prague, Czech Republic (2018)
Albarran-Arriagada, F., Retamal, J.C., Solano, E., Lamata, L.: Measurement-based adaptation protocol with quantum reinforcement learning. Phys. Rev. A 98, 042315 (2018)
Yu, S., Albarran-Arriagada, F., Retamal, J.C., Wang, Y.-T., Liu, W., Ke, Z.-J., Meng, Y., Li, Z.-P., Tang, J.-S., Solano, E., Lamata, L., Li, C.-F., Guo, G.-C.: Reconstruction of a photonic qubit state with reinforcement learning. arXiv:1808.09241
Olivares-Sánchez, J., Casanova, J., Solano, E., Lamata, L.: Measurement-based adaptation protocol with quantum reinforcement learning in a Rigetti quantum computer. arXiv:1811.07594v1
Acknowledgements
K.S.S. and D.Y.S. acknowledge the hospitality provided by IISER Kolkata during the project work. K.S.S. acknowledges Dr. Radhakrishna G. Pillai and Prof. Veeramani P.V. for their constant support. D.Y.S. acknowledges Prof. Debashis Chakraborty, Prof. Mitesh M. Khapra, Nirav D. Karelia and Jatinder Salwan for their constant support. K.S.S. and D.Y.S. also thank the NIUS Physics Program, Dr. Rajesh B. Khaparde and Dr. Praveen K. Pathak for building their interest in quantum computation. K.S.S. and D.Y.S. also like to show their gratitude to their mother and father. K.S.S. and D.Y.S. also thank Rahul Pratap Singh for showing them way around in QISKit. B.K.B. acknowledges the prestigious Prime Minister’s Research Fellowship provided by DST, Govt. of India.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shenoy, K.S., Sheth, D.Y., Behera, B.K. et al. Demonstration of a measurement-based adaptation protocol with quantum reinforcement learning on the IBM Q experience platform. Quantum Inf Process 19, 161 (2020). https://doi.org/10.1007/s11128-020-02657-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02657-x