Demonstration of a measurement-based adaptation protocol with quantum reinforcement learning on the IBM Q experience platform | Quantum Information Processing Skip to main content

Advertisement

Log in

Demonstration of a measurement-based adaptation protocol with quantum reinforcement learning on the IBM Q experience platform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Cloning an unknown state is an important task in the field of quantum computation as it is one of the basic operations required in any experiment. The no-cloning theorem states that it is impossible to create an identical copy of an arbitrary unknown quantum state. Hence, techniques are developed to clone unknown states to high fidelities, rather than to exact copies. The usual method of cloning is quantum tomography, which measures a set of observables to reconstruct the unknown state. This method proves to be very expensive when the number of copies of the unknown state is limited. Here, we try to clone an unknown state in IBM’s QASM simulator using a quantum reinforcement learning protocol (Albarran-Arriagada et al. in Phys Rev A 98:042315, 2018), where the “right” amount of punishment/reward function and boundary conditions can give much better fidelity than what tomography can offer in limited copies of the state. Using this method, we can attain above 90% fidelity in under 50 copies. This method proves to be very useful for reconstructing quantum states when only limited copies of the state are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chouard, T., Venema, L.: Machine intelligence. Nature 521, 435 (2015)

    Article  ADS  Google Scholar 

  2. Stajic, J., Stone, R., Chin, G., Wible, B.: Rise of the machines. Science 349, 248 (2015)

    Article  ADS  Google Scholar 

  3. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484 (2016)

    Article  ADS  Google Scholar 

  4. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, New York (1995)

    MATH  Google Scholar 

  5. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach. Springer, Berlin (2013)

    MATH  Google Scholar 

  6. Jordan, M.I., Mitchel, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, OSDI’16, pp. 265–283 (2016)

  8. Pepper, A., Tischler, N., Pryde, G.J.: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning. Phys. Rev. Lett. 122, 060501 (2019)

    Article  ADS  Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)

    Article  ADS  Google Scholar 

  10. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85 (2015)

    Article  Google Scholar 

  11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT, Cambridge (1998)

    MATH  Google Scholar 

  12. Littman, M.L.: Reinforcement learning improves behaviour from evaluative feedback. Nature 521, 445 (2015)

    Article  ADS  Google Scholar 

  13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529 (2015)

    Article  ADS  Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2010)

    Book  Google Scholar 

  15. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56, 172 (2014)

    Article  ADS  Google Scholar 

  16. Aimeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90, 261 (2013)

    Article  MathSciNet  Google Scholar 

  17. Adcock, J., Allen, E., Day, M, Frick, S., Hinchliff, J., Johnson, M., Morley-Short, S., Pallister, S., Price, A., Stanisic, S.: Advances in quantum machine learning. arXiv:1512.02900

  18. Biswas, R., Jiang, Z., Kechezhi, K., Knysh, S., Mandra, S., O’Gorman, B., Perdomo-Ortiz, A., Petukhov, A., Realpe-G’omez, J., Rieffel, E., Venturelli, D., Vasko, F., Wang, Z.: A NASA perspective on quantum computing: opportunities and challenges. Parallel Comput. 64, 81 (2016)

    Article  MathSciNet  Google Scholar 

  19. Dong, D., Chen, C., Li, H., Tarn, T.-J.: Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. B Cybern. 38, 1207 (2008)

    Article  Google Scholar 

  20. Paparo, G.D., Dunjko, V., Makmal, A., Martin-Delgado, M.A., Briegel, H.J.: Quantum speedup for active learning agents. Phys. Rev. X 4, 031002 (2014)

    Google Scholar 

  21. Dunjko, V., Taylor, J.M., Briegel, H.J.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. IBM Quantum Experience. https://quantumexperience.ng.bluemix.net/qx/experience

  23. Gangopadhyay, S., Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch-Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Coles, P.J., et al.: Quantum algorithm implementations for beginners. arXiv:1804.03719

  25. Cervera-Lierta, A.: Exact Ising model simulation on a quantum computer. Quantum 2, 114 (2018)

    Article  Google Scholar 

  26. Zhukov, A.A., Remizov, S.V., Pogosov, W.V., Lozovik, Y.E.: Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Inf. Process. 17, 223 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Viyuela, O., Rivas, A., Gasparinetti, S., Wallraff, A., Filipp, S., Martin-Delgado, M.A.: Observation of topological Uhlmann phases with superconducting qubits. npj Quantum Inf. 4, 10 (2018)

    Article  ADS  Google Scholar 

  28. Kapil, M., Behera, B.K., Panigrahi, P.K.: Quantum simulation of Klein Gordon equation and observation of Klein Paradox in IBM quantum computer. arXiv:1807.00521

  29. Hegade, N.N., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of quantum tunneling in IBM Quantum computer. arXiv:1712.07326

  30. Fedortchenko, S.: A quantum teleportation experiment for undergraduate students. arXiv:1607.02398

  31. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Singh, R.K., Panda, B., Behera, B.K., Panigrahi, P.K.: Demonstration of a general fault-tolerant quantum error detection code for (2n+1)-qubit entangled state on IBM 16-qubit quantum computer. arXiv:1807.02883

  35. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum artificial life in an IBM quantum computer. Sci. Rep. 8, 14793 (2018)

    Article  ADS  Google Scholar 

  36. Zhao, Z., Pozas-Kerstjens, A., Rebentrost, P., Wittek, P.: Bayesian deep learning on a quantum computer. arXiv:1806.11463

  37. Pal, A., Chandra, S., Mongia, V., Behera, B.K., Panigrahi, P.K.: Solving Sudoku game using a hybrid classical-quantum algorithm. Europhys. Lett. 128, 40007 (2019)

    Article  Google Scholar 

  38. Mahanti, S., Das, S., Behera, B.K., Panigrahi, P.K.: Quantum robots can fly; play games: an IBM quantum experience. Quantum Inf. Process. 18, 219 (2019)

    Article  ADS  Google Scholar 

  39. Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient quantum algorithm for solving travelling salesman problem: an IBM quantum experience. arXiv:1805.10928

  40. Dash, A., Sarmah, D., Behera, B.K., Panigrahi, P.K.: Exact search algorithm to factorize large biprimes and a triprime on IBM quantum computer. arXiv:1805.10478

  41. Zhang, X., Xiang, H., Xiang, T., Fu, L., Sang, J.: An efficient quantum circuits optimizing scheme compared with QISKit. arXiv:1807.01703

  42. Dueck, G.W., Pathak, A., Rahman, M.M., Shukla, A., Banerjee, A.: Optimization of circuits for IBM’s five-qubit quantum computers. In: 21st Euromicro Conference on Digital System Design, pp. 680–684. Prague, Czech Republic (2018)

  43. Albarran-Arriagada, F., Retamal, J.C., Solano, E., Lamata, L.: Measurement-based adaptation protocol with quantum reinforcement learning. Phys. Rev. A 98, 042315 (2018)

    Article  ADS  Google Scholar 

  44. Yu, S., Albarran-Arriagada, F., Retamal, J.C., Wang, Y.-T., Liu, W., Ke, Z.-J., Meng, Y., Li, Z.-P., Tang, J.-S., Solano, E., Lamata, L., Li, C.-F., Guo, G.-C.: Reconstruction of a photonic qubit state with reinforcement learning. arXiv:1808.09241

  45. Olivares-Sánchez, J., Casanova, J., Solano, E., Lamata, L.: Measurement-based adaptation protocol with quantum reinforcement learning in a Rigetti quantum computer. arXiv:1811.07594v1

  46. https://github.com/DevSheth/QRL_cloning_code

Download references

Acknowledgements

K.S.S. and D.Y.S. acknowledge the hospitality provided by IISER Kolkata during the project work. K.S.S. acknowledges Dr. Radhakrishna G. Pillai and Prof. Veeramani P.V. for their constant support. D.Y.S. acknowledges Prof. Debashis Chakraborty, Prof. Mitesh M. Khapra, Nirav D. Karelia and Jatinder Salwan for their constant support. K.S.S. and D.Y.S. also thank the NIUS Physics Program, Dr. Rajesh B. Khaparde and Dr. Praveen K. Pathak for building their interest in quantum computation. K.S.S. and D.Y.S. also like to show their gratitude to their mother and father. K.S.S. and D.Y.S. also thank Rahul Pratap Singh for showing them way around in QISKit. B.K.B. acknowledges the prestigious Prime Minister’s Research Fellowship provided by DST, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash K. Behera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenoy, K.S., Sheth, D.Y., Behera, B.K. et al. Demonstration of a measurement-based adaptation protocol with quantum reinforcement learning on the IBM Q experience platform. Quantum Inf Process 19, 161 (2020). https://doi.org/10.1007/s11128-020-02657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02657-x

Keywords

Navigation