Benchmarking quantum processors with a single qubit | Quantum Information Processing Skip to main content

Advertisement

Log in

Benchmarking quantum processors with a single qubit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The first generation of small noisy quantum processors have recently become available to non-specialists who are not required to understand specifics of the physical platforms and, in particular, the types and sources of noise. As such, it is useful to benchmark the performance of such computers against specific tasks that may be of interest to users, ideally keeping both the circuit depth and width as free parameters. Here, we benchmark the IBM quantum experience using the deterministic quantum computing with 1 qubit (DQC1) algorithm originally proposed by Knill and Laflamme in the context of liquid-state NMR. In the first set of experiments, we use DQC1 as a trace estimation algorithm to benchmark performance with respect to circuit depth. In the second set, we use this trace estimation algorithm to distinguish between knots, a classically difficult task which is known to be complete for DQC1. Our results indicate that the main limiting factor is the depth of the circuit and that both random and systematic errors become an issue when the gate count increases. Surprisingly, we find that at the same gate count wider circuits perform better, probably due to randomization of coherent errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The initialization procedure works for some fixed \(\alpha \ll 1\) that depends on the parameters of the experiment, and does not scale badly with N.

  2. Repeating experiments is generally not a scalable technique.

  3. However, this is not an apples-to-apples comparison since (without fault tolerance) a 4-qubit machine is expected to outperform a 14-qubit machine in a \(\le 4\)-qubit experiment.

References

  1. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)

    Article  ADS  Google Scholar 

  2. IBM Quantum Experience. https://www.research.ibm.com/ibm-q

  3. Takita, M., Cross, A.W., Córcoles, A.D., Chow, J.M., Gambetta, J.M.: Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017)

    Article  ADS  Google Scholar 

  4. Pokharel, B., Anand, N., Fortman, B., Lidar, D.: Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits. Phys. Rev. Lett. 121, 220502 (2018)

    Article  ADS  Google Scholar 

  5. Figgatt, C., Maslov, D., Landsman, K.A., Linke, N.M., Debnath, S., Monroe, C.: Complete 3-qubit grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017)

    Article  ADS  Google Scholar 

  6. Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing (2016). arXiv:1607.08535

  7. Lu, D., Li, K., Li, J., Katiyar, H., Park, A.J., Feng, G., Xin, T., Li, H., Long, G., Brodutch, A., Baugh, J., Zeng, B., Laflamme, R.: Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf. 3, 45 (2017)

    Article  ADS  Google Scholar 

  8. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  9. 16-Qubit Backend: IBM Q team, IBM Q 16 Rüschlikon backend specification V1.1.0 (2018). https://github.com/Qiskit/ibmq-device-information/blob/master/backends/rueschlikon/. Accessed 12 Nov 2019

  10. 14-Qubit Backend: IBM Q team, IBM Q 14 Melbourne backend specification V1.1.0 (2018). https://github.com/Qiskit/ibmq-device-information/tree/master/backends/melbourne/. Accessed 12 Nov 2019

  11. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  12. Shor, P.W., Jordan, S.P.: Estimating Jones polynomials is a complete problem for one clean qubit. Quantum Inf. Comput. 8, 681 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Boyer, M., Brodutch, A., Mor, T.: Entanglement and deterministic quantum computing with one qubit. Phys. Rev. A 95, 022330 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Park, D.K., Rhee, J.K.K., Lee, S.: Noise-tolerant parity learning with one quantum bit. Phys. Rev. A 97, 032327 (2018)

    Article  ADS  Google Scholar 

  15. Morimae, T., Fujii, K., Nishimura, H.: Power of one non-clean qubit. Phys. Rev. A 95, 042336 (2017)

    Article  ADS  Google Scholar 

  16. Kapourniotis, T., Kashefi, E., Datta, A.: In: 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014), Leibniz International Proceedings in Informatics (LIPIcs), vol. 27, ed. by S.T. Flammia, A.W. Harrow (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2014), Leibniz International Proceedings in Informatics (LIPIcs), vol. 27, pp. 176–204. https://doi.org/10.4230/LIPIcs.TQC.2014.176. http://drops.dagstuhl.de/opus/volltexte/2014/4815

  17. Emerson, J., Silva, M., Moussa, O., Ryan, C., Laforest, M., Baugh, J., Cory, D.G., Laflamme, R.: Symmetrized characterization of noisy quantum processes. Science 317, 1893 (2007)

    Article  ADS  Google Scholar 

  18. Wallman, J., Granade, C., Harper, R., Flammia, S.T.: Estimating the coherence of noise. New J. Phys. 17, 113020 (2015)

    Article  ADS  Google Scholar 

  19. The code used for running the algorithms is available online via GitHub. https://github.com/agnostiQ/DQC1-knots. Accessed 12 Nov 2019

  20. Baez, J., Muniain, J.P.: Gauge Fields, Knots and Gravity. World Scientific Publishing Company, Singapore (1994)

    Book  Google Scholar 

  21. Pullin, J.: Knot theory and quantum gravity in loop space: a primer. AIP Conf. Proc. 317, 141 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lackenby, M.: A polynomial upper bound on Reidemeister moves. Ann. Math. 182, 491 (2015)

    Article  MathSciNet  Google Scholar 

  23. Jones, V.F.R.: A polynomial invariant for knots via Von Neumann algebras. Bull. Am. Math. Soc. 12, 103 (1985)

    Article  MathSciNet  Google Scholar 

  24. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335 (1987)

    Article  MathSciNet  Google Scholar 

  25. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. Algorithmica 55, 395 (2009)

    Article  MathSciNet  Google Scholar 

  26. Passante, G., Moussa, O., Ryan, C.A., Laflamme, R.: Experimental approximation of the Jones polynomial with one quantum bit. Phys. Rev. Lett. 103, 250501 (2009)

    Article  ADS  Google Scholar 

  27. Passante, G.: On experimental deterministic quantum computation with one quantum bit (DQC1). Ph.D. thesis, University of Waterloo (2012)

  28. Lu, D., Li, H., Trottier, D.A., Li, J., Brodutch, A., Krismanich, A.P., Ghavami, A., Dmitrienko, G.I., Long, G., Baugh, J., et al.: Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett. 114, 140505 (2015)

    Article  ADS  Google Scholar 

  29. Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)

    Article  ADS  Google Scholar 

  30. Emerson, J., Alicki, R., Życzkowski, K.: Scalable noise estimation with random unitary operators. J. Opt. B: Quantum Semiclass. Opt. 7, S347–S352 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018)

    Article  Google Scholar 

  32. McKay, D.C., Sheldon, S., Smolin, J.A., Chow, J.M., Gambetta, J.M.: Three-qubit randomized benchmarking. Phys. Rev. Lett. 122, 200502 (2019)

    Article  ADS  Google Scholar 

  33. Proctor, T.J., Carignan-Dugas, A., Rudinger, K., Nielsen, E., Blume-Kohout, R., Young, K.: Direct randomized benchmarking for multiqubit devices. Phys. Rev. Lett. 123, 030503 (2019)

    Article  ADS  Google Scholar 

  34. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  ADS  Google Scholar 

  35. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

    Article  ADS  Google Scholar 

  36. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv:1411.4028

  37. Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5, 45 (2019)

    Article  ADS  Google Scholar 

  38. Verdon, G., Broughton, M., McClean, J.R., Sung, K.J., Babbush, R., Jiang, Z., Neven, H., Mohseni, M.: Learning to learn with quantum neural networks via classical neural networks (2019). arXiv:1907.05415

  39. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019)

    Article  ADS  Google Scholar 

  40. Shin, S.W., Smith, G., Smolin, J.A., Vazirani, U.: How “quantum” is the D-wave machine? (2014). arXiv:1401.7087

  41. Hamerly, R., Inagaki, T., McMahon, P.L., Venturelli, D., Marandi, A., Onodera, T., Ng, E., Rieffel, E., Fejer, M.M., Utsunomiya, S., Takesue, H., Yamamoto, Y.: In: Conference on Lasers and Electro-Optics, p. FTu4A.2. Optical Society of America (2018)

  42. Morimae, T., Fujii, K., Fitzsimons, J.F.: Hardness of classically simulating the one-clean-qubit model. Phys. Rev. Lett. 112, 130502 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge use of the IBM Q for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team. This work was partially supported by the CIFAR “Quantum Information Science” program and an NSERC grant “Experimental Quantum Information, Quantum Measurement, and Quantum Foundations With Entangled Photons and Ultracold Atoms” via Aephraim Steinberg’s research group. KBF acknowledges the NSERC PDF program for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Göktaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göktaş, O., Tham, W.K., Bonsma-Fisher, K. et al. Benchmarking quantum processors with a single qubit. Quantum Inf Process 19, 146 (2020). https://doi.org/10.1007/s11128-020-02642-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02642-4

Keywords

Navigation