Abstract
The first generation of small noisy quantum processors have recently become available to non-specialists who are not required to understand specifics of the physical platforms and, in particular, the types and sources of noise. As such, it is useful to benchmark the performance of such computers against specific tasks that may be of interest to users, ideally keeping both the circuit depth and width as free parameters. Here, we benchmark the IBM quantum experience using the deterministic quantum computing with 1 qubit (DQC1) algorithm originally proposed by Knill and Laflamme in the context of liquid-state NMR. In the first set of experiments, we use DQC1 as a trace estimation algorithm to benchmark performance with respect to circuit depth. In the second set, we use this trace estimation algorithm to distinguish between knots, a classically difficult task which is known to be complete for DQC1. Our results indicate that the main limiting factor is the depth of the circuit and that both random and systematic errors become an issue when the gate count increases. Surprisingly, we find that at the same gate count wider circuits perform better, probably due to randomization of coherent errors.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The initialization procedure works for some fixed \(\alpha \ll 1\) that depends on the parameters of the experiment, and does not scale badly with N.
Repeating experiments is generally not a scalable technique.
However, this is not an apples-to-apples comparison since (without fault tolerance) a 4-qubit machine is expected to outperform a 14-qubit machine in a \(\le 4\)-qubit experiment.
References
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)
IBM Quantum Experience. https://www.research.ibm.com/ibm-q
Takita, M., Cross, A.W., Córcoles, A.D., Chow, J.M., Gambetta, J.M.: Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017)
Pokharel, B., Anand, N., Fortman, B., Lidar, D.: Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits. Phys. Rev. Lett. 121, 220502 (2018)
Figgatt, C., Maslov, D., Landsman, K.A., Linke, N.M., Debnath, S., Monroe, C.: Complete 3-qubit grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017)
Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing (2016). arXiv:1607.08535
Lu, D., Li, K., Li, J., Katiyar, H., Park, A.J., Feng, G., Xin, T., Li, H., Long, G., Brodutch, A., Baugh, J., Zeng, B., Laflamme, R.: Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf. 3, 45 (2017)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
16-Qubit Backend: IBM Q team, IBM Q 16 Rüschlikon backend specification V1.1.0 (2018). https://github.com/Qiskit/ibmq-device-information/blob/master/backends/rueschlikon/. Accessed 12 Nov 2019
14-Qubit Backend: IBM Q team, IBM Q 14 Melbourne backend specification V1.1.0 (2018). https://github.com/Qiskit/ibmq-device-information/tree/master/backends/melbourne/. Accessed 12 Nov 2019
Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)
Shor, P.W., Jordan, S.P.: Estimating Jones polynomials is a complete problem for one clean qubit. Quantum Inf. Comput. 8, 681 (2007)
Boyer, M., Brodutch, A., Mor, T.: Entanglement and deterministic quantum computing with one qubit. Phys. Rev. A 95, 022330 (2017)
Park, D.K., Rhee, J.K.K., Lee, S.: Noise-tolerant parity learning with one quantum bit. Phys. Rev. A 97, 032327 (2018)
Morimae, T., Fujii, K., Nishimura, H.: Power of one non-clean qubit. Phys. Rev. A 95, 042336 (2017)
Kapourniotis, T., Kashefi, E., Datta, A.: In: 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014), Leibniz International Proceedings in Informatics (LIPIcs), vol. 27, ed. by S.T. Flammia, A.W. Harrow (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2014), Leibniz International Proceedings in Informatics (LIPIcs), vol. 27, pp. 176–204. https://doi.org/10.4230/LIPIcs.TQC.2014.176. http://drops.dagstuhl.de/opus/volltexte/2014/4815
Emerson, J., Silva, M., Moussa, O., Ryan, C., Laforest, M., Baugh, J., Cory, D.G., Laflamme, R.: Symmetrized characterization of noisy quantum processes. Science 317, 1893 (2007)
Wallman, J., Granade, C., Harper, R., Flammia, S.T.: Estimating the coherence of noise. New J. Phys. 17, 113020 (2015)
The code used for running the algorithms is available online via GitHub. https://github.com/agnostiQ/DQC1-knots. Accessed 12 Nov 2019
Baez, J., Muniain, J.P.: Gauge Fields, Knots and Gravity. World Scientific Publishing Company, Singapore (1994)
Pullin, J.: Knot theory and quantum gravity in loop space: a primer. AIP Conf. Proc. 317, 141 (1994)
Lackenby, M.: A polynomial upper bound on Reidemeister moves. Ann. Math. 182, 491 (2015)
Jones, V.F.R.: A polynomial invariant for knots via Von Neumann algebras. Bull. Am. Math. Soc. 12, 103 (1985)
Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335 (1987)
Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. Algorithmica 55, 395 (2009)
Passante, G., Moussa, O., Ryan, C.A., Laflamme, R.: Experimental approximation of the Jones polynomial with one quantum bit. Phys. Rev. Lett. 103, 250501 (2009)
Passante, G.: On experimental deterministic quantum computation with one quantum bit (DQC1). Ph.D. thesis, University of Waterloo (2012)
Lu, D., Li, H., Trottier, D.A., Li, J., Brodutch, A., Krismanich, A.P., Ghavami, A., Dmitrienko, G.I., Long, G., Baugh, J., et al.: Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett. 114, 140505 (2015)
Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)
Emerson, J., Alicki, R., Życzkowski, K.: Scalable noise estimation with random unitary operators. J. Opt. B: Quantum Semiclass. Opt. 7, S347–S352 (2005)
Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven, H.: Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018)
McKay, D.C., Sheldon, S., Smolin, J.A., Chow, J.M., Gambetta, J.M.: Three-qubit randomized benchmarking. Phys. Rev. Lett. 122, 200502 (2019)
Proctor, T.J., Carignan-Dugas, A., Rudinger, K., Nielsen, E., Blume-Kohout, R., Young, K.: Direct randomized benchmarking for multiqubit devices. Phys. Rev. Lett. 123, 030503 (2019)
Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv:1411.4028
Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., Perdomo-Ortiz, A.: A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5, 45 (2019)
Verdon, G., Broughton, M., McClean, J.R., Sung, K.J., Babbush, R., Jiang, Z., Neven, H., Mohseni, M.: Learning to learn with quantum neural networks via classical neural networks (2019). arXiv:1907.05415
Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019)
Shin, S.W., Smith, G., Smolin, J.A., Vazirani, U.: How “quantum” is the D-wave machine? (2014). arXiv:1401.7087
Hamerly, R., Inagaki, T., McMahon, P.L., Venturelli, D., Marandi, A., Onodera, T., Ng, E., Rieffel, E., Fejer, M.M., Utsunomiya, S., Takesue, H., Yamamoto, Y.: In: Conference on Lasers and Electro-Optics, p. FTu4A.2. Optical Society of America (2018)
Morimae, T., Fujii, K., Fitzsimons, J.F.: Hardness of classically simulating the one-clean-qubit model. Phys. Rev. Lett. 112, 130502 (2014)
Acknowledgements
We acknowledge use of the IBM Q for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team. This work was partially supported by the CIFAR “Quantum Information Science” program and an NSERC grant “Experimental Quantum Information, Quantum Measurement, and Quantum Foundations With Entangled Photons and Ultracold Atoms” via Aephraim Steinberg’s research group. KBF acknowledges the NSERC PDF program for funding.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Göktaş, O., Tham, W.K., Bonsma-Fisher, K. et al. Benchmarking quantum processors with a single qubit. Quantum Inf Process 19, 146 (2020). https://doi.org/10.1007/s11128-020-02642-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02642-4