Abstract
Moving at the speed of light, the photon is the ideal physical support to transmit information. Polarization of a photon is the predominant quantum property used to encode information, but other encoding domains, such as the spatial-mode degree of freedom, have been considered. In this paper, we put forward the entanglement degree of freedom of a photon as an exploitable resource for encoding information in quantum cryptographic protocols. We show how classical information can be extracted from the quantum state of a photon by distinguishing between a singular, independent state and an entangled state through interferometry. We also give a direct application of our technique to quantum key distribution as a proof of concept for future quantum protocols that may use coding in the entanglement domain in combination with other degrees of freedom that are currently exploited for cryptographic purposes.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abulkasim, H., Farouk, A., Alsuqaih, H., Hamdan, W., Hamad, S., Ghose, S.: Improving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 17(11), 316 (2018). https://doi.org/10.1007/s11128-018-2091-7
Assche, G.V.: Quantum Cryptography and Secret-Key Distillation. Cambridge University Press, Cambridge (2006)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984), Bangalore, India December (1984)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)
Born, M., Wolf, E.: Principles of Optics, 7th (expanded) edition. Cambridge University Press, Cambridge (1999)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)
Brown, J.: The Quest for the Quantum Computer, Touchstone edn. Simon & Schuster, New York (2001)
Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)
Horgan, J.: Quantum philosophy. Sci. Am. 267(1), 94–105 (1992)
Howell, J.C., Bennink, R.S., Bentley, S.J., Boyd, R.W.: Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)
Ji, Y., Chung, Y., Sprinzak, D., Heiblum, M., Mahalu, D., Shtrikman, H.: An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003). https://doi.org/10.1038/nature01503
Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)
Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)
Nape, I., Otte, E., Vallés, A., Rosales-Guzmán, C., Cardano, F., Denz, C., Forbes, A.: Self-healing high-dimensional quantum key distribution using hybrid spin-orbit bessel states. Opt. Express 26(21), 26946–26960 (2018)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)
Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)
Sit, A., Fickler, R., Alsaiari, F., Bouchard, F., Larocque, H., Gregg, P., Yan, L., Boyd, R.W., Ramachandran, S., Karimi, E.: Quantum cryptography with structured photons through a vortex fiber. Opt. Lett. 43(17), 4108–4111 (2018)
Spekkens, R.W., Rudolph, T.: Degrees of concealment and bindingness in quantum bit commitment protocols. Phys. Rev. Lett. A 65, 012310 (2002)
Wang, L., Ma, W.: Quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 16(5), 1–15 (2017). https://doi.org/10.1007/s11128-017-1576-0
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nagy, M., Nagy, N. Coding in the entanglement domain. Quantum Inf Process 19, 134 (2020). https://doi.org/10.1007/s11128-020-02632-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02632-6