Nonlocal correlations and noise in different settings of a two-player game | Quantum Information Processing Skip to main content
Log in

Nonlocal correlations and noise in different settings of a two-player game

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nonlocal correlations in a quantum mechanical system hold an indispensable place in understanding the foundational aspects of theory, and for exploring efficient theoretical and experimental proposals in the regime of quantum computation and information which are otherwise not possible using classical resources. One of the possible ways to understand the nuances of nonlocal correlations is to put it in the framework of game theory. For this purpose, we address the issue of decoherence and protection of nonlocal correlations from local noise from the perspective of a game, considering the two players as noise and weak measurement reversal operations, respectively. In order to effectively understand the moves of players, we study maximum payoff and Nash equilibrium strategies for different noisy channels. Our results compare two different situations where payoffs of players are defined using the Bell inequality and discord, respectively. The analysis shows a contrasting description of payoffs and strategies in two different cases. We believe that the results obtained here will help one to understand the intricacies involved in the process of entanglement distribution through noisy channels, evaluating optimal parameters to obtain maximum payoff in the designed game, and Nash equilibrium strategies of players to win the desired game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  3. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  MATH  Google Scholar 

  4. Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398, 189 (1999)

    Article  ADS  Google Scholar 

  5. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982)

    Article  ADS  Google Scholar 

  6. Aspect, A., Dalibard, J., Roger, G.: Experimental test of bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1982 (1804)

    MathSciNet  Google Scholar 

  7. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Howell, J.C., Bennink, R.S., Bentley, S.J., Boyd, R.W.: Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)

    Article  ADS  Google Scholar 

  9. Eberle, T., Handchen, V., Duhme, J., Franz, T., Werner, R.F., Schnabel, R.: Strong Einstein–Podolsky–Rosen entanglement from a single squeezed light source. Phys. Rev. A 83, 052329 (2011)

    Article  ADS  Google Scholar 

  10. Takei, N., Lee, N., Moriyama, D., Neergaard-Nielsen, J.S., Furusawa, A.: Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source. Phys. Rev. A 74, 060101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bohm, D., Aharanov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108(4), 1070 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  12. Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. Math. Gen. 44, 45304 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Batle, J., Ooi, C.H., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit x states. Quantum Inf. Process. 15, 1553 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  15. Popescu, S., Rohrlich, D.: Generic quantum nonlocality. Phys. Lett. A 166(5), 293–297 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 2 (1999)

    Article  MathSciNet  Google Scholar 

  17. Horodecki, M., Horodecki, K., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90, 100402 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Brunner, N., Gisin, N., Scarani, V.: Entanglement and non-locality are different resources. New J. Phys. 7(1), 88 (2005)

    Article  ADS  Google Scholar 

  19. Popescu, S.: Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264–270 (2014)

    Article  Google Scholar 

  20. Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)

    Article  ADS  Google Scholar 

  21. Vértesi, T., Brunner, N.: Quantum nonlocality does not imply entanglement distillability. Phys. Rev. Lett. 108, 030403 (2012)

    Article  ADS  Google Scholar 

  22. Chaves, R., de Melo, F.: Noisy one-way quantum computations: the role of correlations. Phys. Rev. A 84, 022324 (2011)

    Article  ADS  Google Scholar 

  23. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  24. Brodutch, A., Terno, D.R.: Entanglement, discord, and the power of quantum computation. Phys. Rev. A 83, 010301 (2011)

    Article  ADS  Google Scholar 

  25. Gu, M., Chrzanowski, H.M., Assad, S.M., Symul, T., Modi, K., Ralph, T.C., Vedral, V., Lam, P.K.: Observing the operational significance of discord consumption. Nat. Phys. 8(9), 671–675 (2012)

    Article  Google Scholar 

  26. Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  27. Brodutch, A.: Discord and quantum computational resources. Phys. Rev. A 88, 022307 (2013)

    Article  ADS  Google Scholar 

  28. Pirandola, S.: Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)

    Article  ADS  Google Scholar 

  29. Brodutch, A., Gilchrist, A., Terno, D.R., Wood, C.J.: Quantum discord in quantum computation. J. Phys. Conf. Ser. 306, 012030 (2011)

    Article  Google Scholar 

  30. Streltsov, A.: Quantum entanglement. In: Quantum Correlations Beyond Entanglement. SpringerBriefs in Physics. Springer, Cham (2015)

  31. Brodutch, A., Terno, D.R.: Why Should We Care About Quantum Discord?, pp. 183–199. Springer, Cham (2017)

    MATH  Google Scholar 

  32. Khan, F.S., Solmeyer, N., Balu, R., Humble, T.S.: Quantum games: a review of the history, current state, and interpretation. Quantum Inf. Process. 17(11), 309 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)

    Article  MATH  Google Scholar 

  36. Vaidman, L.: Variations on the theme of the Greenberger-Horne-Zeilinger proof. Found. Phys. 29(4), 615–630 (1999)

    Article  MathSciNet  Google Scholar 

  37. Goldenberg, L., Vaidman, L., Wiesner, S.: Quantum gambling. Phys. Rev. Lett. 82(16), 3356–3359 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Flitney, A.P., Abbott, D.: Quantum version of the monty hall problem. Phys. Rev. A 65, 62318 (2002)

    Article  ADS  Google Scholar 

  39. Phoenix, S.J.D., Khan, F.S.: The role of correlation in quantum and classical games. Fluct. Noise Lett. 12(3), 1350011 (2013)

    Article  ADS  Google Scholar 

  40. Cheon, T., Iqbal, A.: Bayesian Nash equilibria and Bell inequalities. J. Phys. Soc. Jpn. 77, 024801 (2008)

    Article  ADS  Google Scholar 

  41. Harsanyi, J.C.: Games with incomplete information played by bayesian players. Manag. Sci. 14(3), 159–183 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  42. Harsanyi, J.C.: Games with incomplete information played by Bayesian players. Manag. Sci. 14(5), 320–334 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  43. Harsanyi, J.C.: Games with incomplete information played by Bayesian players. Manag. Sci. 14(7), 486–502 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  44. Cereceda, J.L.: Identification of all hardy-type correlations for two photons or particles with spin 1/2. Found. Phys. Lett. 14, 401 (2001)

    Article  MathSciNet  Google Scholar 

  45. Brunner, N., Linden, N.: Connection between bell nonlocality and bayesian game theory. Nature Communications 4, 2057 (2013)

    Article  ADS  Google Scholar 

  46. Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58, 731 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  47. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151, 107 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  49. Bar-Jossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum and classical one-way communication complexity. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 128–137. ACM, New York (2004)

  50. Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit bell inequality violations. In: Proceedings of the 26th IEEE Annual Conference on Computational Complexity, pp. 157–166. IEEE Computer Society, Washington, DC (2011)

  51. Benjamin, S.C., Hayden, P.M.: Comment on quantum games and quantum strategies. Phys. Rev. Lett. 87, 069801 (2001)

    Article  ADS  Google Scholar 

  52. Eisert, J., Wilkens, M., Lewenstein, M.: Reply. Phys. Rev. Lett. 87, 069802 (2001)

    Article  ADS  Google Scholar 

  53. van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66, 024306 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. Aharon, N., Vaidman, L.: Quantum advantages in classically defined tasks. Phys. Rev. A 77, 052310 (2008)

    Article  ADS  Google Scholar 

  55. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  56. Situ, H., Huang, Z.: Relativistic quantum bayesian game under decoherence. Int. J. Theor. Phys. 55, 2354–2363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Huang, Z., Situ, H., Zhao, L.: Payoffs and coherence of a quantum two-player game under noisy environment. Eur. Phys. J. Plus 132, 152 (2017)

    Article  Google Scholar 

  58. Situ, H., Alonso-Sanz, R., Li, L., Zhang, C.: Land bidding game with conflicting interest and its quantum solution. Int. J. Quantum Inf. 15, 5 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Gawron, L.: Noisy quantum monty hall game. Fluct. Noise Lett. 09, 01 (2010)

    Article  MathSciNet  Google Scholar 

  60. Gawron, P., Miszczak, J., Sladkowski, J.: Noise effects in quantum magic squares game. Int. J. Quantum Inf. 06, 667 (2008)

    Article  MATH  Google Scholar 

  61. Dajka, J., Kloda, D., Lobejko, M., Sladkowski, J.: Quantum two player game in thermal environment. PLoS ONE 10, 8 (2015)

    Article  Google Scholar 

  62. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  63. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  64. Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)

    Article  ADS  Google Scholar 

  65. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  66. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  67. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  68. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  70. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  71. Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum zeno effect. Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  72. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  74. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  75. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17(14), 11978–11985 (2009)

    Article  ADS  Google Scholar 

  76. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  77. Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)

    Article  ADS  Google Scholar 

  78. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  79. Singh, P., Kumar, A.: Correlations, nonlocality and usefulness of an efficient class of two-qubit mixed entangled states. Zeitschrift für Naturforschung A 73(3), 191–206 (2018)

    Article  ADS  Google Scholar 

  80. Singh, P., Kumar, A.: Analysing nonlocal correlations in three-qubit partially entangled states under real conditions. Int. J. Theor. Phys. 57(10), 3172–3189 (2018)

    Article  MATH  Google Scholar 

  81. Singh, P., Kumar, A.: Analysing nonlocality robustness in multiqubit systems under noisy conditions and weak measurements. Quantum Inf. Process. 17(9), 249 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19(17), 16309–16316 (2011)

    Article  ADS  Google Scholar 

  83. Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Phys. 8, 117–120 (2012)

    Article  ADS  Google Scholar 

  84. Xu, X.Y., Kedem, Y., Sun, K., Vaidman, L., Li, C.F., Guo, G.C.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013)

    Article  ADS  Google Scholar 

  85. Katz, N., Ansmann, M., Bialczak, R.C., Lucero, E., McDermott, R., Neeley, M., Steffen, M., Weig, E.M., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)

    Article  ADS  Google Scholar 

  86. Groen, J.P., Riste, D., Tornberg, L., Cramer, J., de Groot, P.C., Picot, T., Johansson, G., DiCarlo, L.: Partial-measurement backaction and nonclassical weak values in a superconducting circuit. Phys. Rev. Lett. 111, 090506 (2013)

    Article  ADS  Google Scholar 

  87. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  88. Nash, J.F.: Equilibrium points in n-person game. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 36, pp. 48–49. National Academy of Sciences, Washington (1950)

  89. Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  90. Guan, S.-Y., Jin, Z., He-Jin, W., Zhu, A.-D., Wang, H.-F., Zhang, S.: Restoration of three-qubit entanglements and protection of tripartite quantum state sharing over noisy channels via environment-assisted measurement and reversal weak measurement. Quantum Inf. Process. 16(5), 137 (2017)

    Article  ADS  MATH  Google Scholar 

  91. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377(44), 3209–3215 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  93. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  94. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

    Article  ADS  MATH  Google Scholar 

  95. Rajagopal, A.K., Rendell, R.W.: Separability and correlations in composite states based on entropy methods. Phys. Rev. A 66, 022104 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  96. Luo, S., Shuangshuang, F.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  97. Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, New York (2003)

    Google Scholar 

  98. Khan, Faisal Shah, Humble, Travis S.: Nash embedding and equilibrium in pure quantum states. In: Quantum Technology and Optimization Problems, pp. 51–62, Cham, 2019. Springer (2019)

  99. Rubinstein, A.: Finite automata play the repeated prisoner’s dilemma. J. Econ. Theory 39(1), 83–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  100. Löding, C.: Infinite games and automata theory. In: Apt, K.R., Grädel, E. (eds.) Lectures in Game Theory for Computer Scientists, pp. 38–73. Cambridge University Press, Cambridge (2011)

  101. Hirvensalo, M.: Quantum Automata Theory—A Review, pp. 146–167. Springer, Berlin (2011)

    MATH  Google Scholar 

  102. Binmore, K.: Playing for Real: A Text on Game Theory. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  103. Giannakis, K., Papalitsas, C., Kastampolidou, K., Singh, A., Andronikos, T.: Dominant strategies of quantum games on quantum periodic automata. Computation (Basel) 3(4), 586–599 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MHRD and IIT Jodhpur for providing the research facility, and Gurbani Kaur, Department of Economics, McGill University, for helpful discussions on Nash Equilibrium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Kumar, A. Nonlocal correlations and noise in different settings of a two-player game. Quantum Inf Process 19, 57 (2020). https://doi.org/10.1007/s11128-019-2545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2545-6

Keywords

Navigation