Abstract
Nonlocal correlations in a quantum mechanical system hold an indispensable place in understanding the foundational aspects of theory, and for exploring efficient theoretical and experimental proposals in the regime of quantum computation and information which are otherwise not possible using classical resources. One of the possible ways to understand the nuances of nonlocal correlations is to put it in the framework of game theory. For this purpose, we address the issue of decoherence and protection of nonlocal correlations from local noise from the perspective of a game, considering the two players as noise and weak measurement reversal operations, respectively. In order to effectively understand the moves of players, we study maximum payoff and Nash equilibrium strategies for different noisy channels. Our results compare two different situations where payoffs of players are defined using the Bell inequality and discord, respectively. The analysis shows a contrasting description of payoffs and strategies in two different cases. We believe that the results obtained here will help one to understand the intricacies involved in the process of entanglement distribution through noisy channels, evaluating optimal parameters to obtain maximum payoff in the designed game, and Nash equilibrium strategies of players to win the desired game.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880 (1969)
Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398, 189 (1999)
Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: a new violation of bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982)
Aspect, A., Dalibard, J., Roger, G.: Experimental test of bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1982 (1804)
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)
Howell, J.C., Bennink, R.S., Bentley, S.J., Boyd, R.W.: Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004)
Eberle, T., Handchen, V., Duhme, J., Franz, T., Werner, R.F., Schnabel, R.: Strong Einstein–Podolsky–Rosen entanglement from a single squeezed light source. Phys. Rev. A 83, 052329 (2011)
Takei, N., Lee, N., Moriyama, D., Neergaard-Nielsen, J.S., Furusawa, A.: Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source. Phys. Rev. A 74, 060101 (2006)
Bohm, D., Aharanov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108(4), 1070 (1957)
Batle, J., Casas, M.: Nonlocality and entanglement in qubit systems. Math. Gen. 44, 45304 (2011)
Batle, J., Ooi, C.H., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit x states. Quantum Inf. Process. 15, 1553 (2016)
Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991)
Popescu, S., Rohrlich, D.: Generic quantum nonlocality. Phys. Lett. A 166(5), 293–297 (1992)
Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 2 (1999)
Horodecki, M., Horodecki, K., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90, 100402 (2003)
Brunner, N., Gisin, N., Scarani, V.: Entanglement and non-locality are different resources. New J. Phys. 7(1), 88 (2005)
Popescu, S.: Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264–270 (2014)
Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)
Vértesi, T., Brunner, N.: Quantum nonlocality does not imply entanglement distillability. Phys. Rev. Lett. 108, 030403 (2012)
Chaves, R., de Melo, F.: Noisy one-way quantum computations: the role of correlations. Phys. Rev. A 84, 022324 (2011)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Brodutch, A., Terno, D.R.: Entanglement, discord, and the power of quantum computation. Phys. Rev. A 83, 010301 (2011)
Gu, M., Chrzanowski, H.M., Assad, S.M., Symul, T., Modi, K., Ralph, T.C., Vedral, V., Lam, P.K.: Observing the operational significance of discord consumption. Nat. Phys. 8(9), 671–675 (2012)
Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)
Brodutch, A.: Discord and quantum computational resources. Phys. Rev. A 88, 022307 (2013)
Pirandola, S.: Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)
Brodutch, A., Gilchrist, A., Terno, D.R., Wood, C.J.: Quantum discord in quantum computation. J. Phys. Conf. Ser. 306, 012030 (2011)
Streltsov, A.: Quantum entanglement. In: Quantum Correlations Beyond Entanglement. SpringerBriefs in Physics. Springer, Cham (2015)
Brodutch, A., Terno, D.R.: Why Should We Care About Quantum Discord?, pp. 183–199. Springer, Cham (2017)
Khan, F.S., Solmeyer, N., Balu, R., Humble, T.S.: Quantum games: a review of the history, current state, and interpretation. Quantum Inf. Process. 17(11), 309 (2018)
Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)
Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077–3080 (1999)
Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)
Vaidman, L.: Variations on the theme of the Greenberger-Horne-Zeilinger proof. Found. Phys. 29(4), 615–630 (1999)
Goldenberg, L., Vaidman, L., Wiesner, S.: Quantum gambling. Phys. Rev. Lett. 82(16), 3356–3359 (1999)
Flitney, A.P., Abbott, D.: Quantum version of the monty hall problem. Phys. Rev. A 65, 62318 (2002)
Phoenix, S.J.D., Khan, F.S.: The role of correlation in quantum and classical games. Fluct. Noise Lett. 12(3), 1350011 (2013)
Cheon, T., Iqbal, A.: Bayesian Nash equilibria and Bell inequalities. J. Phys. Soc. Jpn. 77, 024801 (2008)
Harsanyi, J.C.: Games with incomplete information played by bayesian players. Manag. Sci. 14(3), 159–183 (1967)
Harsanyi, J.C.: Games with incomplete information played by Bayesian players. Manag. Sci. 14(5), 320–334 (1967)
Harsanyi, J.C.: Games with incomplete information played by Bayesian players. Manag. Sci. 14(7), 486–502 (1967)
Cereceda, J.L.: Identification of all hardy-type correlations for two photons or particles with spin 1/2. Found. Phys. Lett. 14, 401 (2001)
Brunner, N., Linden, N.: Connection between bell nonlocality and bayesian game theory. Nature Communications 4, 2057 (2013)
Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58, 731 (1990)
Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373 (1990)
Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151, 107 (1990)
Bar-Jossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum and classical one-way communication complexity. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 128–137. ACM, New York (2004)
Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-optimal and explicit bell inequality violations. In: Proceedings of the 26th IEEE Annual Conference on Computational Complexity, pp. 157–166. IEEE Computer Society, Washington, DC (2011)
Benjamin, S.C., Hayden, P.M.: Comment on quantum games and quantum strategies. Phys. Rev. Lett. 87, 069801 (2001)
Eisert, J., Wilkens, M., Lewenstein, M.: Reply. Phys. Rev. Lett. 87, 069802 (2001)
van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66, 024306 (2002)
Aharon, N., Vaidman, L.: Quantum advantages in classically defined tasks. Phys. Rev. A 77, 052310 (2008)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Situ, H., Huang, Z.: Relativistic quantum bayesian game under decoherence. Int. J. Theor. Phys. 55, 2354–2363 (2016)
Huang, Z., Situ, H., Zhao, L.: Payoffs and coherence of a quantum two-player game under noisy environment. Eur. Phys. J. Plus 132, 152 (2017)
Situ, H., Alonso-Sanz, R., Li, L., Zhang, C.: Land bidding game with conflicting interest and its quantum solution. Int. J. Quantum Inf. 15, 5 (2017)
Gawron, L.: Noisy quantum monty hall game. Fluct. Noise Lett. 09, 01 (2010)
Gawron, P., Miszczak, J., Sladkowski, J.: Noise effects in quantum magic squares game. Int. J. Quantum Inf. 06, 667 (2008)
Dajka, J., Kloda, D., Lobejko, M., Sladkowski, J.: Quantum two player game in thermal environment. PLoS ONE 10, 8 (2015)
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)
Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)
Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900 (1997)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)
Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)
Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)
Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum zeno effect. Phys. Rev. A 69, 032314 (2004)
Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum zeno effect. Phys. Rev. Lett. 100, 090503 (2008)
Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)
Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)
Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17(14), 11978–11985 (2009)
Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)
Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement. Phys. Rev. Lett. 109, 150402 (2012)
Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)
Singh, P., Kumar, A.: Correlations, nonlocality and usefulness of an efficient class of two-qubit mixed entangled states. Zeitschrift für Naturforschung A 73(3), 191–206 (2018)
Singh, P., Kumar, A.: Analysing nonlocal correlations in three-qubit partially entangled states under real conditions. Int. J. Theor. Phys. 57(10), 3172–3189 (2018)
Singh, P., Kumar, A.: Analysing nonlocality robustness in multiqubit systems under noisy conditions and weak measurements. Quantum Inf. Process. 17(9), 249 (2018)
Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19(17), 16309–16316 (2011)
Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Phys. 8, 117–120 (2012)
Xu, X.Y., Kedem, Y., Sun, K., Vaidman, L., Li, C.F., Guo, G.C.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013)
Katz, N., Ansmann, M., Bialczak, R.C., Lucero, E., McDermott, R., Neeley, M., Steffen, M., Weig, E.M., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)
Groen, J.P., Riste, D., Tornberg, L., Cramer, J., de Groot, P.C., Picot, T., Johansson, G., DiCarlo, L.: Partial-measurement backaction and nonclassical weak values in a superconducting circuit. Phys. Rev. Lett. 111, 090506 (2013)
Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Nash, J.F.: Equilibrium points in n-person game. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 36, pp. 48–49. National Academy of Sciences, Washington (1950)
Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
Guan, S.-Y., Jin, Z., He-Jin, W., Zhu, A.-D., Wang, H.-F., Zhang, S.: Restoration of three-qubit entanglements and protection of tripartite quantum state sharing over noisy channels via environment-assisted measurement and reversal weak measurement. Quantum Inf. Process. 16(5), 137 (2017)
Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377(44), 3209–3215 (2013)
Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)
Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)
Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)
Rajagopal, A.K., Rendell, R.W.: Separability and correlations in composite states based on entropy methods. Phys. Rev. A 66, 022104 (2002)
Luo, S., Shuangshuang, F.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)
Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, New York (2003)
Khan, Faisal Shah, Humble, Travis S.: Nash embedding and equilibrium in pure quantum states. In: Quantum Technology and Optimization Problems, pp. 51–62, Cham, 2019. Springer (2019)
Rubinstein, A.: Finite automata play the repeated prisoner’s dilemma. J. Econ. Theory 39(1), 83–96 (1986)
Löding, C.: Infinite games and automata theory. In: Apt, K.R., Grädel, E. (eds.) Lectures in Game Theory for Computer Scientists, pp. 38–73. Cambridge University Press, Cambridge (2011)
Hirvensalo, M.: Quantum Automata Theory—A Review, pp. 146–167. Springer, Berlin (2011)
Binmore, K.: Playing for Real: A Text on Game Theory. Oxford University Press, Oxford (2007)
Giannakis, K., Papalitsas, C., Kastampolidou, K., Singh, A., Andronikos, T.: Dominant strategies of quantum games on quantum periodic automata. Computation (Basel) 3(4), 586–599 (2015)
Acknowledgements
The authors would like to thank MHRD and IIT Jodhpur for providing the research facility, and Gurbani Kaur, Department of Economics, McGill University, for helpful discussions on Nash Equilibrium.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kaur, H., Kumar, A. Nonlocal correlations and noise in different settings of a two-player game. Quantum Inf Process 19, 57 (2020). https://doi.org/10.1007/s11128-019-2545-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2545-6