Abstract
In light of quantum dense coding in the case of high-dimension quantum states between two parties, by introducing additional local operations for encoding, we propose a brand-new bidirectional quantum dense coding scheme, in which two legitimate agents can simultaneously transmit their different encoded messages to each other. In addition, we present a bidirectional quantum dense coding scheme with a control by virtue of the generalized Hadamard transformation. We show how to implement the cyclic quantum dense coding in an arbitrary high dimension where Alice can transfer her encoded messages \(n_1m_1\) to Bob; meanwhile, Bob can transfer his encoded messages \(n_2m_2\) to Charlie and Charlie can also transfer his encoded messages \(n_3m_3\) to Alice in both clockwise and counterclockwise directions. We can also generalize the cyclic scheme to system having \(n\ge 3\) agents. Thereby, our scheme can realize dense coding in quantum information networks with n agents in arbitrary directions.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)
Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)
Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)
Mattle, K., Weinfurter, H., Kwiat, P.G., et al.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)
Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)
Grudka, A., Wojcik, A.: Symmetric scheme for superdense coding between multiparties. Phys. Rev. A 66(1), 014301 (2002)
Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71(1), 012311 (2005)
Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72(1), 012329 (2005)
Bruß, D., Lewenstein, M., Sen, A., et al.: Dense coding with multipartite quantum states. Int. J. Quantum Inf. 4(3), 415–428 (2006)
Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)
Li, L., Qiu, D.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A Math. Theor. 40(35), 10871 (2007)
Laurenza, R., Lupo, C., Lloyd, S., et al.: Dense coding capacity of a quantum channel. arXiv preprint arXiv:1903.09168 (2019)
Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63(5), 054301 (2001)
Situ, H.Z., Qiu, D.W.: Simultaneous dense coding. J. Phys. A Math. Theor. 43(5), 055301 (2010)
Huelga, S.F., Vaccaro, J.A., Chefles, A., et al.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)
Fu, H.Z., Tian, X.L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840–1847 (2014)
Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)
Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein–Podolsky–Rosen pair block. arXiv preprint arXiv:quant-ph/0403215 (2004)
Sarvaghad-Moghaddam, M.: Efficient controlled bidirectional quantum secure direct communication using entanglement swapping and EPR pairs. arXiv preprint arXiv:1902.11188 (2019)
Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263–4278 (2015)
Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)
Chen, Y.X., Du, J., Liu, S.Y., et al.: Cyclic quantum teleportation. Quantum Inf. Process. 16(8), 201 (2017)
Vaziri, A., Weihs, G., Zeilinger, A.: Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89(24), 240401 (2002)
Dada, A.C., Leach, J., Buller, G.S., et al.: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7(9), 677 (2011)
Agnew, M., Leach, J., McLaren, M., et al.: Tomography of the quantum state of photons entangled in high dimensions. Phys. Rev. A 84(6), 062101 (2011)
Giovannini, D., Romero, J., Leach, J., et al.: Characterization of high-dimensional entangled systems via mutually unbiased measurements. Phys. Rev. Lett. 110(14), 143601 (2013)
Krenn, M., Huber, M., Fickler, R., et al.: Generation and confirmation of a (100\(\times \)100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. 111(17), 6243–6247 (2014)
Malik, M., Erhard, M., Huber, M., et al.: Multi-photon entanglement in high dimensions. Nat. Photon. 10(4), 248 (2016)
Zhang, Y., Roux, F.S., Konrad, T., et al.: Engineering two-photon high-dimensional states through quantum interference. Sci. Adv. 2(2), e1501165 (2016)
Fujiwara, M., Takeoka, M., Mizuno, J., et al.: Exceeding the classical capacity limit in a quantum optical channel. Phys. Rev. Lett. 90(16), 167906 (2003)
Mafu, M., Dudley, A., Goyal, S., et al.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88(3), 032305 (2013)
Cerf, N.J., Bourennane, M., Karlsson, A., et al.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)
Durt, T., Kaszlikowski, D., Chen, J.L., et al.: Security of quantum key distributions with entangled qudits. Phys. Rev. A 69(3), 032313 (2004)
Huber, M., Pawlowski, M.: Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement. Phys. Rev. A 88(3), 032309 (2013)
Kaszlikowski, D., Gnaciski, P., Żukowski, M., et al.: Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85(21), 4418 (2000)
Son, W., Lee, J., Kim, M.S.: Generic Bell inequalities for multipartite arbitrary dimensional systems. Phys. Rev. Lett. 96(6), 060406 (2006)
Collins, D., Gisin, N., Linden, N., et al.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88(4), 040404 (2002)
Cerf, N.J., Massar, S., Pironio, S.: Greenberger–Horne–Zeilinger paradoxes for many qudits. Phys. Rev. Lett. 89(8), 080402 (2002)
Lanyon, B.P., Barbieri, M., Almeida, M.P., et al.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5(2), 134 (2009)
Mair, A., Vaziri, A., Weihs, G., et al.: Entanglement of the orbital angular momentum states of photons. Nature 412(6844), 313 (2001)
Gu, B., Li, C.Q., Xu, F., et al.: High-capacity three-party quantum secret sharing with superdense coding. Chin. Phys. B 18(11), 4690 (2009)
Stenholm, S., Bardroff, P.J.: Teleportation of N-dimensional states. Phys. Rev. A 58(6), 4373 (1998)
Zhan, Y.B.: Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement. Chin. Phys. 16(9), 2557 (2007)
Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)
Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 65(5), 052331 (2002)
Gottesman, D.: Fault-tolerant quantum computation with higher-dimensional systems. Physics 10(10), 302–313 (1998)
Wang, F., Erhard, M., Babazadeh, A., et al.: Generation of the complete four-dimensional Bell basis. Optica 4(12), 1462–1467 (2017)
Reck, M., Zeilinger, A., Bernstein, H.J., et al.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58 (1994)
Lanyon, B.P., Weinhold, T.J., Langford, N.K., et al.: Manipulating biphotonic qutrits. Phys. Rev. Lett. 100(6), 060504 (2008)
Lin, Q., He, B.: Bi-directional mapping between polarization and spatially encoded photonic qutrits. Phys. Rev. A 80(6), 062312 (2009)
Lin, Q.: Optical realization of universal unitary operation of single partite polarization encoded qudit. Sci. Sin. 44(3), 317–325 (2014)
Babazadeh, A., Erhard, M., Wang, F., et al.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119(18), 180510 (2017)
Calsamiglia, J.: Generalized measurements by linear elements. Phys. Rev. A 65(3), 030301 (2002)
Zhang, H., Zhang, C., Hu, X.M., et al.: Arbitrary two-particle high-dimensional Bell-state measurement by auxiliary entanglement. Phys. Rev. A 99(5), 052301 (2019)
Hu, X.M., Guo, Y., Liu, B.H., et al.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4(7), eaat9304 (2018)
Guo, Y., Liu, B.H., Li, C.F., et al.: Advances in quantum dense coding. Adv. Quantum Technol. 2(5–6), 1900011 (2019)
Acknowledgements
The authors thank all of the editors and reviewers for their valuable suggestions, which have substantially improved this paper. This work is supported by the National Natural Science Foundation of China (Grant No. 11671284), Sichuan Province Science and Technology Support Program (Grant No. 2017JY0197). The Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2018QYJ02).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yang, X., Bai, Mq., Mo, Zw. et al. Bidirectional and cyclic quantum dense coding in a high-dimension system. Quantum Inf Process 19, 43 (2020). https://doi.org/10.1007/s11128-019-2526-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2526-9