Quantum Lyapunov control with machine learning | Quantum Information Processing Skip to main content
Log in

Quantum Lyapunov control with machine learning

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum state engineering is a central task in Lyapunov-based quantum control. Given different initial states, better performance may be achieved if the control parameters, such as the Lyapunov function, are individually optimized for each initial state, however, at the expense of computing resources. To tackle this issue, we propose an initial-state-adaptive Lyapunov control strategy with machine learning. Specifically, artificial neural networks are used to learn the relationship between the optimal control parameters and initial states through supervised learning with samples. Two designs are presented where the feedforward neural network and the general regression neural network are used to select control schemes and design Lyapunov functions, respectively. We demonstrate the performance of the designs with a three-level quantum system for an eigenstate control problem. Since the sample generation and the training of neural networks are carried out in advance, the initial-state-adaptive Lyapunov control can be implemented for new initial states without much increase of computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. D’Alessandro, D.: Introduction to Quantum Control and Dynamics. Chapman & Hall, Boca Raton (2007)

    MATH  Google Scholar 

  2. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  3. Zhang, J., Liu, Y.-X., Wu, R.-B., Jacobs, K., Nori, F.: Quantum feedback: theory, experiments, and applications. Phys. Rep. 679, 1–60 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Köckenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbrüggen, T., Sugny, D., Wilhelm, F.K.: Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015)

    ADS  Google Scholar 

  5. Machnes, S., Sander, U., Glaser, S.J., de Fouquières, P., Gruslys, A., Schirmer, S., Schulte-Herbrüggen, T.: Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys. Rev. A 84, 022305 (2011)

    ADS  Google Scholar 

  6. Gough, J.E., Belavkin, V.P.: Quantum control and information processing. Quantum Inf. Process. 12, 1397–1415 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Vettori, P.: On the convergence of a feedback control strategy for multilevel quantum systems. In: Proceedings of the Mathematical Theory of Networks and Systems Conference (2002)

  8. Grivopoulos, S., Bamieh, B.: Lyapunov-based control of quantum systems. In: Proceedings of the 42nd IEEE International Conference on Decision and Control, Maui, Hawaii USA, pp. 434–438 (2003)

  9. Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automatica 41, 1987–1994 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Kuang, S., Cong, S.: Lyapunov control methods of closed quantum systems. Automatica 44, 98–108 (2008)

    MATH  Google Scholar 

  11. Wang, X., Schirmer, S.G.: Analysis of Lyapunov method for control of quantum states. IEEE Trans. Autom. Control 55(10), 2259–2270 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Hou, S.C., Khan, M.A., Yi, X.X., Dong, D., Petersen, I.R.: Optimal Lyapunov-based quantum control for quantum systems. Phys. Rev. A 86, 022321 (2012)

    ADS  Google Scholar 

  13. Wang, L.C., Hou, S.C., Yi, X.X., Dong, D., Petersen, I.R.: Optimal Lyapunov quantum control of two-level systems: convergence and extended techniques. Phys. Lett. A 378, 1074 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Zhao, S., Lin, H., Xue, Z.: Switching control of closed quantum systems via the Lyapunov method. Automatica 48(8), 1833–1838 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Kuang, S., Dong, D., Petersen, I.R.: Rapid Lyapunov control of finite-dimensional quantum systems. Automatica 81, 164–175 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Silveira, H.B., da Silva, P.S.P., Rouchon, P.: Quantum gate generation for systems with drift in U(n) using Lyapunov–LaSalle techniques. Int. J. Control 89(12), 2466–2481 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Li, W., Li, C., Song, H.: Quantum synchronization in an optomechanical system based on Lyapunov control. Phys. Rev. E 93, 062221 (2016)

    ADS  Google Scholar 

  18. Shi, Z.C., Wang, L.C., Yi, X.X.: Preparing entangled states by Lyapunov control. Quantum Inf. Process. 15, 4939–4953 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Shi, Z.C., Zhao, X.L., Yi, X.X.: Preparation of topological modes by Lyapunov control. Sci. Rep. 5, 13777 (2015)

    ADS  Google Scholar 

  20. Hou, S.C., Wang, L.C., Yi, X.X.: Realization of quantum gates by Lyapunov control. Phys. Lett. A 378(9), 699–704 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Yi, X.X., Huang, X.L., Wu, C., Oh, C.H.: Driving quantum systems into decoherence-free subspaces by Lyapunov control. Phys. Rev. A 80, 052316 (2009)

    ADS  Google Scholar 

  22. Amini, H., Somaraju, R.A., Dotsenko, I., Sayrin, C., Mirrahimi, M., Rouchon, P.: Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays. Automatica 49(9), 2683–2692 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Ge, S.S., Vu, T.L., Lee, T.H.: Quantum measurement-based feedback control: a nonsmooth time delay control approach. SIAM J. Control Optim. 50(2), 845–863 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Sayrin, C., Dotsenko, I., Zhou, X., Peaudecerf, B., Rybarczyk, T., Gleyzes, S., Rouchon, P., Mirrahimi, M., Amini, H., Brune, M., et al.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011)

    ADS  Google Scholar 

  25. Dotsenko, I., Mirrahimi, M., Brune, M., Haroche, S., Raimond, J.M., Rouchon, P.: Quantum feedback by discrete quantum nondemolition measurements: towards on-demand generation of photon-number states. Phys. Rev. A 80, 013805 (2009)

    ADS  Google Scholar 

  26. Wang, X., Schirmer, S.G.: Entanglement generation between distant atoms by Lyapunov control. Phys. Rev. A 80, 042305 (2009)

    ADS  Google Scholar 

  27. Dong, D., Petersen, I.R.: Sliding mode control of two-level quantum systems. Automatica 48(5), 725–735 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Shi, Z.C., Zhao, X.L., Yi, X.X.: Robust state transfer with high fidelity in spin-1/2 chains by Lyapunov control. Phys. Rev. A 91, 032301 (2015)

    ADS  Google Scholar 

  29. Shi, Z.C., Hou, S.C., Wang, L.C., Yi, X.X.: Preparation of edge states by shaking boundaries. Ann. Phys. 373, 286–297 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Ran, D., Shi, Z.-C., Song, J., Xia, Y.: Speeding up adiabatic passage by adding Lyapunov control. Phys. Rev. A 96, 033803 (2017)

    ADS  Google Scholar 

  31. Li, C., Song, J., Xia, Y., Ding, W.: Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control. Opt. Express 26, 951–962 (2018)

    ADS  Google Scholar 

  32. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. MIT Press, Cambridge (2010)

    MATH  Google Scholar 

  33. Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson, New Jersey (2009)

    Google Scholar 

  34. Magesan, E., Gambetta, J.M., Córcoles, A.D., Chow, J.M.: Machine learning for discriminating quantum measurement trajectories and improving readout. Phys. Rev. Lett. 114, 200501 (2015)

    ADS  Google Scholar 

  35. Mills, K., Spanner, M., Tamblyn, I.: Deep learning and the Schrödinger equation. Phys. Rev. A 96, 042113 (2017)

    ADS  Google Scholar 

  36. Melnikov, A.A., Nautrup, H.P., Krenn, M., Dunjko, V., Tiersch, M., Zeilinger, A., Briegel, H.J.: Active learning machine learns to create new quantum experiments. Proc. Natl. Acad. Sci. 115(6), 1221–1226 (2018)

    ADS  Google Scholar 

  37. Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018)

    Google Scholar 

  38. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural network. Science 355, 602–906 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Deng, D.-L.: Machine learning detection of bell nonlocality in quantum many-body systems. Phys. Rev. Lett. 120, 240402 (2018)

    ADS  MathSciNet  Google Scholar 

  40. Gao, J., Qiao, L.-F., Jiao, Z.-Q., Ma, Y.-C., Hu, C.-Q., Ren, R.-J., Yang, A.-L., Tang, H., Yung, M.-H., Jin, X.-M.: Experimental machine learning of quantum states. Phys. Rev. Lett. 120, 240501 (2018)

    ADS  Google Scholar 

  41. Zahedinejad, E., Ghosh, J., Sanders, B.C.: Designing high-fidelity single-shot three-qubit gates: a machine-learning approach. Phys. Rev. Appl. 6, 054005 (2016)

    ADS  Google Scholar 

  42. Mavadia, S., Frey, V., Sastrawan, J., Dona, S., Biercuk, M.J.: Prediction and real-time compensation of qubit decoherence via machine learning. Nat. Commun. 8, 14106 (2017)

    ADS  Google Scholar 

  43. August, M., Ni, X.: Using recurrent neural networks to optimize dynamical decoupling for quantum memory. Phys. Rev. A 95, 012335 (2017)

    ADS  Google Scholar 

  44. Yang, X.-C., Yung, M.-H., Wang, X.: Neural-network-designed pulse sequences for robust control of singlet-triplet qubits. Phys. Rev. A 97, 042324 (2018)

    ADS  Google Scholar 

  45. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)

    Google Scholar 

  46. Leung, M.T., Chen, A.S., Daouk, H.: Forecasting exchange rates using general regression neural networks. Comput. Oper. Res. 27, 1093–1110 (2000)

    MATH  Google Scholar 

  47. Li, C., Bovik, A.C., Wu, X.: Blind image quality assessment using a general regression neural network. IEEE Trans. Neural Netw. 22(5), 793–799 (2011)

    Google Scholar 

  48. Liu, J., Bao, W., Shi, L., Zuo, B., Gao, W.: General regression neural network for prediction of sound absorption coefficients of sandwich structure nonwoven absorbers. Appl. Acoust. 76, 128–137 (2014)

    Google Scholar 

  49. Panda, B.N., Bahubalendruni, M.R., Biswal, B.B.: A general regression neural network approach for the evaluation of compressive strength of FDM prototypes. Neural Comput. Appl. 26, 1129–1136 (2015)

    Google Scholar 

  50. Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34, 7111 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11705026, 11534002, 11775048, 61475033, the China Postdoctoral Science Foundation under Grant No. 2017M611293, and the Fundamental Research Funds for the Central Universities under Grant No. 2412017QD003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. X. Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, S.C., Yi, X.X. Quantum Lyapunov control with machine learning. Quantum Inf Process 19, 8 (2020). https://doi.org/10.1007/s11128-019-2470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2470-8

Keywords

Navigation