Abstract
Quantum state engineering is a central task in Lyapunov-based quantum control. Given different initial states, better performance may be achieved if the control parameters, such as the Lyapunov function, are individually optimized for each initial state, however, at the expense of computing resources. To tackle this issue, we propose an initial-state-adaptive Lyapunov control strategy with machine learning. Specifically, artificial neural networks are used to learn the relationship between the optimal control parameters and initial states through supervised learning with samples. Two designs are presented where the feedforward neural network and the general regression neural network are used to select control schemes and design Lyapunov functions, respectively. We demonstrate the performance of the designs with a three-level quantum system for an eigenstate control problem. Since the sample generation and the training of neural networks are carried out in advance, the initial-state-adaptive Lyapunov control can be implemented for new initial states without much increase of computational resources.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
D’Alessandro, D.: Introduction to Quantum Control and Dynamics. Chapman & Hall, Boca Raton (2007)
Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)
Zhang, J., Liu, Y.-X., Wu, R.-B., Jacobs, K., Nori, F.: Quantum feedback: theory, experiments, and applications. Phys. Rep. 679, 1–60 (2017)
Glaser, S.J., Boscain, U., Calarco, T., Koch, C.P., Köckenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbrüggen, T., Sugny, D., Wilhelm, F.K.: Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015)
Machnes, S., Sander, U., Glaser, S.J., de Fouquières, P., Gruslys, A., Schirmer, S., Schulte-Herbrüggen, T.: Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys. Rev. A 84, 022305 (2011)
Gough, J.E., Belavkin, V.P.: Quantum control and information processing. Quantum Inf. Process. 12, 1397–1415 (2013)
Vettori, P.: On the convergence of a feedback control strategy for multilevel quantum systems. In: Proceedings of the Mathematical Theory of Networks and Systems Conference (2002)
Grivopoulos, S., Bamieh, B.: Lyapunov-based control of quantum systems. In: Proceedings of the 42nd IEEE International Conference on Decision and Control, Maui, Hawaii USA, pp. 434–438 (2003)
Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automatica 41, 1987–1994 (2005)
Kuang, S., Cong, S.: Lyapunov control methods of closed quantum systems. Automatica 44, 98–108 (2008)
Wang, X., Schirmer, S.G.: Analysis of Lyapunov method for control of quantum states. IEEE Trans. Autom. Control 55(10), 2259–2270 (2010)
Hou, S.C., Khan, M.A., Yi, X.X., Dong, D., Petersen, I.R.: Optimal Lyapunov-based quantum control for quantum systems. Phys. Rev. A 86, 022321 (2012)
Wang, L.C., Hou, S.C., Yi, X.X., Dong, D., Petersen, I.R.: Optimal Lyapunov quantum control of two-level systems: convergence and extended techniques. Phys. Lett. A 378, 1074 (2014)
Zhao, S., Lin, H., Xue, Z.: Switching control of closed quantum systems via the Lyapunov method. Automatica 48(8), 1833–1838 (2012)
Kuang, S., Dong, D., Petersen, I.R.: Rapid Lyapunov control of finite-dimensional quantum systems. Automatica 81, 164–175 (2017)
Silveira, H.B., da Silva, P.S.P., Rouchon, P.: Quantum gate generation for systems with drift in U(n) using Lyapunov–LaSalle techniques. Int. J. Control 89(12), 2466–2481 (2016)
Li, W., Li, C., Song, H.: Quantum synchronization in an optomechanical system based on Lyapunov control. Phys. Rev. E 93, 062221 (2016)
Shi, Z.C., Wang, L.C., Yi, X.X.: Preparing entangled states by Lyapunov control. Quantum Inf. Process. 15, 4939–4953 (2016)
Shi, Z.C., Zhao, X.L., Yi, X.X.: Preparation of topological modes by Lyapunov control. Sci. Rep. 5, 13777 (2015)
Hou, S.C., Wang, L.C., Yi, X.X.: Realization of quantum gates by Lyapunov control. Phys. Lett. A 378(9), 699–704 (2014)
Yi, X.X., Huang, X.L., Wu, C., Oh, C.H.: Driving quantum systems into decoherence-free subspaces by Lyapunov control. Phys. Rev. A 80, 052316 (2009)
Amini, H., Somaraju, R.A., Dotsenko, I., Sayrin, C., Mirrahimi, M., Rouchon, P.: Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays. Automatica 49(9), 2683–2692 (2013)
Ge, S.S., Vu, T.L., Lee, T.H.: Quantum measurement-based feedback control: a nonsmooth time delay control approach. SIAM J. Control Optim. 50(2), 845–863 (2012)
Sayrin, C., Dotsenko, I., Zhou, X., Peaudecerf, B., Rybarczyk, T., Gleyzes, S., Rouchon, P., Mirrahimi, M., Amini, H., Brune, M., et al.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011)
Dotsenko, I., Mirrahimi, M., Brune, M., Haroche, S., Raimond, J.M., Rouchon, P.: Quantum feedback by discrete quantum nondemolition measurements: towards on-demand generation of photon-number states. Phys. Rev. A 80, 013805 (2009)
Wang, X., Schirmer, S.G.: Entanglement generation between distant atoms by Lyapunov control. Phys. Rev. A 80, 042305 (2009)
Dong, D., Petersen, I.R.: Sliding mode control of two-level quantum systems. Automatica 48(5), 725–735 (2012)
Shi, Z.C., Zhao, X.L., Yi, X.X.: Robust state transfer with high fidelity in spin-1/2 chains by Lyapunov control. Phys. Rev. A 91, 032301 (2015)
Shi, Z.C., Hou, S.C., Wang, L.C., Yi, X.X.: Preparation of edge states by shaking boundaries. Ann. Phys. 373, 286–297 (2016)
Ran, D., Shi, Z.-C., Song, J., Xia, Y.: Speeding up adiabatic passage by adding Lyapunov control. Phys. Rev. A 96, 033803 (2017)
Li, C., Song, J., Xia, Y., Ding, W.: Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control. Opt. Express 26, 951–962 (2018)
Alpaydin, E.: Introduction to Machine Learning, 2nd edn. MIT Press, Cambridge (2010)
Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson, New Jersey (2009)
Magesan, E., Gambetta, J.M., Córcoles, A.D., Chow, J.M.: Machine learning for discriminating quantum measurement trajectories and improving readout. Phys. Rev. Lett. 114, 200501 (2015)
Mills, K., Spanner, M., Tamblyn, I.: Deep learning and the Schrödinger equation. Phys. Rev. A 96, 042113 (2017)
Melnikov, A.A., Nautrup, H.P., Krenn, M., Dunjko, V., Tiersch, M., Zeilinger, A., Briegel, H.J.: Active learning machine learns to create new quantum experiments. Proc. Natl. Acad. Sci. 115(6), 1221–1226 (2018)
Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018)
Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural network. Science 355, 602–906 (2017)
Deng, D.-L.: Machine learning detection of bell nonlocality in quantum many-body systems. Phys. Rev. Lett. 120, 240402 (2018)
Gao, J., Qiao, L.-F., Jiao, Z.-Q., Ma, Y.-C., Hu, C.-Q., Ren, R.-J., Yang, A.-L., Tang, H., Yung, M.-H., Jin, X.-M.: Experimental machine learning of quantum states. Phys. Rev. Lett. 120, 240501 (2018)
Zahedinejad, E., Ghosh, J., Sanders, B.C.: Designing high-fidelity single-shot three-qubit gates: a machine-learning approach. Phys. Rev. Appl. 6, 054005 (2016)
Mavadia, S., Frey, V., Sastrawan, J., Dona, S., Biercuk, M.J.: Prediction and real-time compensation of qubit decoherence via machine learning. Nat. Commun. 8, 14106 (2017)
August, M., Ni, X.: Using recurrent neural networks to optimize dynamical decoupling for quantum memory. Phys. Rev. A 95, 012335 (2017)
Yang, X.-C., Yung, M.-H., Wang, X.: Neural-network-designed pulse sequences for robust control of singlet-triplet qubits. Phys. Rev. A 97, 042324 (2018)
Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)
Leung, M.T., Chen, A.S., Daouk, H.: Forecasting exchange rates using general regression neural networks. Comput. Oper. Res. 27, 1093–1110 (2000)
Li, C., Bovik, A.C., Wu, X.: Blind image quality assessment using a general regression neural network. IEEE Trans. Neural Netw. 22(5), 793–799 (2011)
Liu, J., Bao, W., Shi, L., Zuo, B., Gao, W.: General regression neural network for prediction of sound absorption coefficients of sandwich structure nonwoven absorbers. Appl. Acoust. 76, 128–137 (2014)
Panda, B.N., Bahubalendruni, M.R., Biswal, B.B.: A general regression neural network approach for the evaluation of compressive strength of FDM prototypes. Neural Comput. Appl. 26, 1129–1136 (2015)
Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34, 7111 (2001)
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant No. 11705026, 11534002, 11775048, 61475033, the China Postdoctoral Science Foundation under Grant No. 2017M611293, and the Fundamental Research Funds for the Central Universities under Grant No. 2412017QD003.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hou, S.C., Yi, X.X. Quantum Lyapunov control with machine learning. Quantum Inf Process 19, 8 (2020). https://doi.org/10.1007/s11128-019-2470-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2470-8