Two-mode squeezing operator in circuit QED | Quantum Information Processing Skip to main content
Log in

Two-mode squeezing operator in circuit QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We theoretically investigate the implementation of the two-mode squeezing operator in circuit quantum electrodynamics. Inspired by a previous scheme for optical cavities (Prado et al. in Phys Rev A 73:043803, 2006), we employ a superconducting qubit coupled to two nondegenerate quantum modes and use a driving field on the qubit to adequately control the resonator–qubit interaction. Based on the generation of two-mode squeezed vacuum states, firstly we analyze the validity of our model in the ideal situation and then we investigate the influence of the dissipation mechanisms on the generation of the two-mode squeezing operation, namely the qubit and resonator mode decays and qubit dephasing. We show that our scheme allows the generation of highly squeezed states even with the state-of-the-art parameters, leading to a theoretical prediction of more than 10 dB of two-mode squeezing. Furthermore, our protocol is able to squeeze an arbitrary initial state of the resonators, which makes our scheme attractive for future applications in continuous-variable quantum information processing and quantum metrology in the realm of circuit quantum electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  2. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)

    Article  ADS  Google Scholar 

  3. Schnabel, R.: Squeezed states of light and their applications in laser interferometers. Phys. Rep. 684, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)

    Article  ADS  Google Scholar 

  5. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Castellanos-Beltran, M.A., Irwin, K.D., Hilton, G.C., Vale, L.R., Lehnert, K.W.: Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929 (2008)

    Article  Google Scholar 

  7. Zagoskin, A.M., Il’ichev, E., McCutcheon, M.W., Young, J., Nori, F.: Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101, 253602 (2008)

    Article  ADS  Google Scholar 

  8. Mallet, F., Castellanos-Beltran, M.A., Ku, H.S., Glancy, S., Knill, E., Irwin, K.D., Hilton, G.C., Vale, L.R., Lehnert, K.W.: Quantum state tomography of an itinerant squeezed microwave field. Phys. Rev. Lett. 106, 220502 (2011)

    Article  ADS  Google Scholar 

  9. Zagoskin, A.M., Ilichev, E., Nori, F.: Heat cost of parametric generation of microwave squeezed states. Phys. Rev. A 85, 063811 (2012)

    Article  ADS  Google Scholar 

  10. Zagoskin, A.M., Savel’ev, S., Nori, F., Kusmarsev, F.V.: Squeezing as the source of inefficiency in the quantum Otto cycle. Phys. Rev. B 86, 014501 (2012)

    Article  ADS  Google Scholar 

  11. Xue, F., Liu, Y.X., Sun, C.P., Nori, F.: Two-mode squeezed states and entangled states of two mechanical resonators. Phys. Rev. B 76, 064305 (2007)

    Article  ADS  Google Scholar 

  12. Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)

    Article  ADS  Google Scholar 

  13. Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in superconducting microwave circuits. Phys. Rev. A 82, 052509 (2010)

    Article  ADS  Google Scholar 

  14. Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature (London) 479, 367 (2011)

    Article  ADS  Google Scholar 

  15. Eichler, C., Bozyigit, D., Lang, C., Baur, M., Steffen, L., Fink, J.M., Filipp, S., Wallraff, A.: Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011)

    Article  ADS  Google Scholar 

  16. Flurin, E., Roch, N., Mallet, F., Devoret, M.H., Huard, B.: Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109, 183901 (2012)

    Article  ADS  Google Scholar 

  17. Menzel, E.P., Di Candia, R., Deppe, F., Eder, P., Zhong, L., Ihmig, M., Haeberlein, M., Baust, A., Hoffmann, E., Ballester, D., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Marx, A., Gross, R.: Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109, 250502 (2012)

    Article  ADS  Google Scholar 

  18. Eichler, C., Salathe, Y., Mlynek, J., Schmidt, S., Wallraff, A.: Quantum-limited amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett. 113, 110502 (2014)

    Article  ADS  Google Scholar 

  19. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  21. Murch, K.W., Weber, S.J., Beck, K.M., Ginossar, E., Siddiqi, I.: Reduction of the radiative decay of atomic coherence in squeezed vacuum. Nature (London) 499, 62 (2013)

    Article  ADS  Google Scholar 

  22. Toyli, D.M., Eddins, A.W., Boutin, S., Puri, S., Hover, D., Bolkhovsky, V., Oliver, W.D., Blais, A., Siddiqi, I.: Resonance fluorescence from an artificial atom in squeezed vacuum. Phys. Rev. X 6, 031004 (2016)

    Google Scholar 

  23. Villas-Boas, C.J., Moussa, M.H.Y.: One-step generation of high-quality squeezed and EPR states in cavity QED. Eur. Phys. J. D-Atom. Mol. Opt. Plasma Phys. 32, 147 (2005)

    Google Scholar 

  24. Prado, F.O., de Almeida, N.G., Moussa, M.H.Y., Villas-Bôas, C.J.: Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics. Phys. Rev. A 73, 043803 (2006)

    Article  ADS  Google Scholar 

  25. Moon, K., Girvin, S.M.: Theory of microwave parametric down-conversion and squeezing using circuit qed. Phys. Rev. Lett. 95, 140504 (2005)

    Article  ADS  Google Scholar 

  26. Wang, Z.H., Sun, C.P., Li, Y.: Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup. Phys. Rev. A 91, 043801 (2015)

    Article  ADS  Google Scholar 

  27. Zhong, W.-X., Cheng, G.-L., Chen, A.-X.: Coherent control of tunable entanglement between two resonators in superconducting circuits. Int. J. Quantum Inf. 12, 1450009 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Orlando, T.P., Mooij, J.E., Tian, L., van der Wal, C.H., Levitov, L.S., Lloyd, S., Mazo, J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15398 (1999)

    Article  ADS  Google Scholar 

  29. Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D.G., Nakamura, Y., Tsai, J.-S., Oliver, W.D.: Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565 (2011)

    Article  Google Scholar 

  30. Paik, H., Schuster, D.I., Bishop, L.S., Kirchmair, G., Catelani, G., Sears, A.P., Johnson, B.R., Reagor, M.J., Frunzio, L., Glazman, L.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)

    Article  ADS  Google Scholar 

  31. Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., Smolin, J.A., Merkel, S.T., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506(R) (2012)

    Article  ADS  Google Scholar 

  32. Ma, S.-L., Li, Z., Fang, A.-P., Li, P.-B., Gao, S.-Y., Li, F.-L.: Controllable generation of two-mode-entangled states in two-resonator circuit QED with a single gap-tunable superconducting qubit. Phys. Rev. A 90, 062342 (2014)

    Article  ADS  Google Scholar 

  33. Wang, C., Gao, Y.Y., Reinhold, P., Heeres, R.W., Ofek, N., Chou, K., Axline, C., Reagor, M., Blumoff, J., Sliwa, K.M., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A Schrödinger cat living in two boxes. Science 352, 1087 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. James, D.F.V.: Quantum computation with hot and cold ions: an assessment of proposed schemes. Fortschr. Phys. 48, 823 (2000)

    Article  Google Scholar 

  35. Duan, L.-M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  MATH  Google Scholar 

  36. Adesso, G., Ragy, S., Lee, A.R.: Continuous variable quantum information: Gaussian states and beyond. Open. Syst. Inf. Dyn. 21, 1440001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yoshihara, F., Nakamura, Y., Yan, F., Gustavsson, S., Bylander, J., Oliver, W.D., Tsai, J.-S.: Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions. Phys. Rev. B 89, 020503(R) (2014)

    Article  ADS  Google Scholar 

  38. Pechal, M., Huthmacher, L., Eichler, C., Zeytinoǧlu, S., Abdumalikov Jr., A.A., Berger, S., Wallraff, A., Filipp, S.: Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014)

    Google Scholar 

  39. Carmichael, H.J.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)

    MATH  Google Scholar 

  40. Beaudoin, F., Gambetta, J.M., Blais, A.: Dissipation and ultrastrong coupling in circuit QED. Phys. Rev. A 84, 043832 (2011)

    Article  ADS  Google Scholar 

  41. Boissonneault, M., Gambetta, J.M., Blais, A.: Dispersive regime of circuit QED: photon-dependent qubit dephasing and relaxation rates. Phys. Rev. A 79, 013819 (2009)

    Article  ADS  Google Scholar 

  42. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012)

    Article  ADS  Google Scholar 

  43. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013)

    Article  ADS  Google Scholar 

  44. Yan, F., Gustavsson, S., Kamal, A., Birenbaum, J., Sears, A.P., Hover, D., Gudmundsen, T.J., Rosenberg, D., Samach, G., Weber, S., Yoder, J.L., Orlando, T.P., Clarke, J., Kerman, A.J., Oliver, W.D.: The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the São Paulo Research Foundation (FAPESP) Grants Nos. 2013/04162-5 and 2013/23512-7, the National Council for Scientific and Technological Development (CNPq) Grants Nos. 161117/2014-7 and 308860/2015-2, and the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ) Grant No. 465469/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Z. Rossatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, E.C., Rossatto, D.Z. & Villas-Boas, C.J. Two-mode squeezing operator in circuit QED. Quantum Inf Process 17, 202 (2018). https://doi.org/10.1007/s11128-018-1971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1971-1

Keywords