Abstract
We theoretically investigate the implementation of the two-mode squeezing operator in circuit quantum electrodynamics. Inspired by a previous scheme for optical cavities (Prado et al. in Phys Rev A 73:043803, 2006), we employ a superconducting qubit coupled to two nondegenerate quantum modes and use a driving field on the qubit to adequately control the resonator–qubit interaction. Based on the generation of two-mode squeezed vacuum states, firstly we analyze the validity of our model in the ideal situation and then we investigate the influence of the dissipation mechanisms on the generation of the two-mode squeezing operation, namely the qubit and resonator mode decays and qubit dephasing. We show that our scheme allows the generation of highly squeezed states even with the state-of-the-art parameters, leading to a theoretical prediction of more than 10 dB of two-mode squeezing. Furthermore, our protocol is able to squeeze an arbitrary initial state of the resonators, which makes our scheme attractive for future applications in continuous-variable quantum information processing and quantum metrology in the realm of circuit quantum electrodynamics.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (2008)
Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)
Schnabel, R.: Squeezed states of light and their applications in laser interferometers. Phys. Rep. 684, 1 (2017)
Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)
Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)
Castellanos-Beltran, M.A., Irwin, K.D., Hilton, G.C., Vale, L.R., Lehnert, K.W.: Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929 (2008)
Zagoskin, A.M., Il’ichev, E., McCutcheon, M.W., Young, J., Nori, F.: Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101, 253602 (2008)
Mallet, F., Castellanos-Beltran, M.A., Ku, H.S., Glancy, S., Knill, E., Irwin, K.D., Hilton, G.C., Vale, L.R., Lehnert, K.W.: Quantum state tomography of an itinerant squeezed microwave field. Phys. Rev. Lett. 106, 220502 (2011)
Zagoskin, A.M., Ilichev, E., Nori, F.: Heat cost of parametric generation of microwave squeezed states. Phys. Rev. A 85, 063811 (2012)
Zagoskin, A.M., Savel’ev, S., Nori, F., Kusmarsev, F.V.: Squeezing as the source of inefficiency in the quantum Otto cycle. Phys. Rev. B 86, 014501 (2012)
Xue, F., Liu, Y.X., Sun, C.P., Nori, F.: Two-mode squeezed states and entangled states of two mechanical resonators. Phys. Rev. B 76, 064305 (2007)
Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)
Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in superconducting microwave circuits. Phys. Rev. A 82, 052509 (2010)
Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature (London) 479, 367 (2011)
Eichler, C., Bozyigit, D., Lang, C., Baur, M., Steffen, L., Fink, J.M., Filipp, S., Wallraff, A.: Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107, 113601 (2011)
Flurin, E., Roch, N., Mallet, F., Devoret, M.H., Huard, B.: Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109, 183901 (2012)
Menzel, E.P., Di Candia, R., Deppe, F., Eder, P., Zhong, L., Ihmig, M., Haeberlein, M., Baust, A., Hoffmann, E., Ballester, D., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Marx, A., Gross, R.: Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109, 250502 (2012)
Eichler, C., Salathe, Y., Mlynek, J., Schmidt, S., Wallraff, A.: Quantum-limited amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett. 113, 110502 (2014)
Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1 (2017)
You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)
Murch, K.W., Weber, S.J., Beck, K.M., Ginossar, E., Siddiqi, I.: Reduction of the radiative decay of atomic coherence in squeezed vacuum. Nature (London) 499, 62 (2013)
Toyli, D.M., Eddins, A.W., Boutin, S., Puri, S., Hover, D., Bolkhovsky, V., Oliver, W.D., Blais, A., Siddiqi, I.: Resonance fluorescence from an artificial atom in squeezed vacuum. Phys. Rev. X 6, 031004 (2016)
Villas-Boas, C.J., Moussa, M.H.Y.: One-step generation of high-quality squeezed and EPR states in cavity QED. Eur. Phys. J. D-Atom. Mol. Opt. Plasma Phys. 32, 147 (2005)
Prado, F.O., de Almeida, N.G., Moussa, M.H.Y., Villas-Bôas, C.J.: Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics. Phys. Rev. A 73, 043803 (2006)
Moon, K., Girvin, S.M.: Theory of microwave parametric down-conversion and squeezing using circuit qed. Phys. Rev. Lett. 95, 140504 (2005)
Wang, Z.H., Sun, C.P., Li, Y.: Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup. Phys. Rev. A 91, 043801 (2015)
Zhong, W.-X., Cheng, G.-L., Chen, A.-X.: Coherent control of tunable entanglement between two resonators in superconducting circuits. Int. J. Quantum Inf. 12, 1450009 (2014)
Orlando, T.P., Mooij, J.E., Tian, L., van der Wal, C.H., Levitov, L.S., Lloyd, S., Mazo, J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15398 (1999)
Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D.G., Nakamura, Y., Tsai, J.-S., Oliver, W.D.: Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565 (2011)
Paik, H., Schuster, D.I., Bishop, L.S., Kirchmair, G., Catelani, G., Sears, A.P., Johnson, B.R., Reagor, M.J., Frunzio, L., Glazman, L.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)
Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., Smolin, J.A., Merkel, S.T., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506(R) (2012)
Ma, S.-L., Li, Z., Fang, A.-P., Li, P.-B., Gao, S.-Y., Li, F.-L.: Controllable generation of two-mode-entangled states in two-resonator circuit QED with a single gap-tunable superconducting qubit. Phys. Rev. A 90, 062342 (2014)
Wang, C., Gao, Y.Y., Reinhold, P., Heeres, R.W., Ofek, N., Chou, K., Axline, C., Reagor, M., Blumoff, J., Sliwa, K.M., Frunzio, L., Girvin, S.M., Jiang, L., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: A Schrödinger cat living in two boxes. Science 352, 1087 (2016)
James, D.F.V.: Quantum computation with hot and cold ions: an assessment of proposed schemes. Fortschr. Phys. 48, 823 (2000)
Duan, L.-M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)
Adesso, G., Ragy, S., Lee, A.R.: Continuous variable quantum information: Gaussian states and beyond. Open. Syst. Inf. Dyn. 21, 1440001 (2014)
Yoshihara, F., Nakamura, Y., Yan, F., Gustavsson, S., Bylander, J., Oliver, W.D., Tsai, J.-S.: Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions. Phys. Rev. B 89, 020503(R) (2014)
Pechal, M., Huthmacher, L., Eichler, C., Zeytinoǧlu, S., Abdumalikov Jr., A.A., Berger, S., Wallraff, A., Filipp, S.: Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014)
Carmichael, H.J.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)
Beaudoin, F., Gambetta, J.M., Blais, A.: Dissipation and ultrastrong coupling in circuit QED. Phys. Rev. A 84, 043832 (2011)
Boissonneault, M., Gambetta, J.M., Blais, A.: Dispersive regime of circuit QED: photon-dependent qubit dephasing and relaxation rates. Phys. Rev. A 79, 013819 (2009)
Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012)
Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013)
Yan, F., Gustavsson, S., Kamal, A., Birenbaum, J., Sears, A.P., Hover, D., Gudmundsen, T.J., Rosenberg, D., Samach, G., Weber, S., Yoder, J.L., Orlando, T.P., Clarke, J., Kerman, A.J., Oliver, W.D.: The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016)
Acknowledgements
This work was supported by the São Paulo Research Foundation (FAPESP) Grants Nos. 2013/04162-5 and 2013/23512-7, the National Council for Scientific and Technological Development (CNPq) Grants Nos. 161117/2014-7 and 308860/2015-2, and the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ) Grant No. 465469/2014-0.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Diniz, E.C., Rossatto, D.Z. & Villas-Boas, C.J. Two-mode squeezing operator in circuit QED. Quantum Inf Process 17, 202 (2018). https://doi.org/10.1007/s11128-018-1971-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1971-1