Abstract
In this paper, we explore the dynamic behaviors of entropic uncertainty relation in a two-qutrit system which is in the presence of external magnetic field and Dzyaloshinskii–Moriya (DM) interaction under intrinsic decoherence. The effects of the isotropic bilinear interaction, the external magnetic field, the DM interaction strength, as well as the intrinsic decoherence on the entropic uncertainty relation have been demonstrated in detail. Compared with previous results, our results show that, controlling the isotropic bilinear interaction parameter J, the external magnetic field strength \(B_{0}\), the DM interaction parameter D can result in inflation of the uncertainty, while increasing the intrinsic decoherence parameter can lift the uncertainty of the measurement. In particularly, under certain conditions (e.g., parameters J, \(B_{0}\) and D are large enough), the entropic uncertainty will ultimately tend to a stable value and be immune to decoherence.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Heisenberg, W.: The actual content of quantum theoretical kinematics and mechanics. Z. Phys. 43, 172 (1927)
Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)
Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett 50, 631C633 (1983)
Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)
Renes, J.M., Boileau, J.C.: Physical underpinnings of privacy. Phys. Rev. A 78, 032335 (2008)
Renes, J.M., Boileau, J.C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)
Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys 6, 659C662 (2010)
Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7, 757 (2011)
Li, C.F., Xu, J.S., Xu, X.Y., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752 (2011)
Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)
Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)
Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210504 (2012)
Hu, M.L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)
Feng, J., Zhang, Y.Z., Gould, M.D., Fan, H.: Entropic uncertainty relations under the relativistic motion. Phys. Rev. B 726, 527–532 (2013)
Hu, Y.D., Zhang, S.B., Wang, D., Ye, L.: Entropic uncertainty relation under dissipative environments and its steering by local non-unitary operations. Int. J. Theor. Phys. 55, 4641 (2016)
Wang, D., Huang, A.J., Ming, F., Sun, W.Y., Liu, H.P., Liu, C.C., Ye, L.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14, 065203 (2017)
Xiao, Y.L., Jing, N.H., Li-Jost, X.Q.: Uncertainty under quantum measures and quantum memory. Quantum. Inf. Pro. 16, 104 (2017)
Huang, A.J., Shi, J.D., Wang, D., Ye, L.: Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16, 46 (2017)
Zhang, J., Zhang, Y., Yu, C.S.: Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep. 5, 11701 (2015)
Zhang, Y.L., Fang, M.F., Kuang, G.D., Zhou, Q.P.: Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal. Int. J. Quantum Inf. 13, 1550037 (2015)
Yao, C.M., Chen, Z.H., Ma, Z.G., Severini, S.: Serafini, A: entanglement and discord assisted entropic uncertainty relations under decoherence. Sci. China 57, 1703–1711 (2014)
Huang, A.J., Wang, D., Wang, J.M., Shi, J.D., Sun, W.Y., Ye, L.: Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 16, 204 (2017)
Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame. Laser Phys. Lett. 14, 055205 (2017)
Zheng, X., Zhang, G.F.: The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski–Moriya interaction. Quantum. Inf. Pro. 16, 1 (2017)
Walborn, S.P., Lemelle, D.S., Almeida, M.P., Ribeiro, P.H.S.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)
Bourennane, M., Karlsson, A., Bjrk, G.: Quantum key distribution using multilevel encoding. Phys. Rev. A 64, 012306 (2001)
Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)
Durt, T., Cerf, N.J., Gisin, N., Zukowski, M.: Security of quantum key distribution with entangled B qutrits. Phys. Rev. A 67, 012311 (2003)
Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solid. 4, 241–255 (1958)
Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)
Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)
Xu, J.B., Zou, X.B.: Dynamic algebraic approach to the system of a three-level atom in the configuration. Phys. Rev. A 60, 4743 (1999)
Liu, B.Q., Shao, B., Zou, J.: Tripartite states Bell-nonlocality sudden death with intrinsic decoherence. Phys. Lett. A 374, 1970–1974 (2010)
Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)
Riccardi, A., Macchiavello, C., Maccone, L.: Tight entropic uncertainty relations for systems with dimension three to five. Phys. Rev. A 95, 032109 (2017)
Man’ko, V.I., Marmo, G., Porzio, A., Solimeno, S., Ventriglia, F.: Homodyne estimation of quantum state purity by exploiting the covariant uncertainty relation. Phys. Scr. 83, 045001 (2011)
Pati, A.K., Wilde, M.M., Devi, A.R.U., Rajagopal, A.K.: Sudha: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)
Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2012)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 11747107 and 11374096), the Natural Science Foundation of Hunan Province (Grant No. 2017JJ3346), the Scientific Research Project of Hunan Province Department of Education (Grant No. 16C0134), the Project of Science and Technology Plan of Changsha (K1705022) and the Start-up Funds for Talent Introduction and Scientific Research of Changsha University 2015 (Grant No. SF1504).
Author information
Authors and Affiliations
Corresponding author
Appendix A
Appendix A
In this Appendix, we give the explicit analytic forms of the entropic uncertainty Eq.(10) and its lower bound Eq.(11) in the text. If one chooses two of the spin-1 observables \(S_{x}\) and \(S_{z}\) whose eigenbases correspond to \((1/2,\sqrt{2}/2,1/2)^\mathrm{{T}}\), \((1/2,-\sqrt{2}/2,1/2)^\mathrm{{T}}\) and \((-\sqrt{2}/2,0,\sqrt{2}/2)^\mathrm{{T}}\) , as well as \((1,0,0)^\mathrm{{T}}\), \((0,1,0)^\mathrm{{T}}\) and \((0,0,1)^\mathrm{{T}}\), respectively, to perform on qutrit A. The post-measurement states \(\rho _{X|B}=\sum _{X}(|\phi _{X}\rangle \langle \phi _{X}|\otimes I)\rho _{AB}(|\phi _{X}\rangle \langle \phi _{X}|\otimes I)\) have the forms, respectively,
where \(M=\eta \epsilon +\eta ^{*}\epsilon ^{*}\),
According to Eq.(2), the left hand and the right hand of the entropic uncertainty relation reduce to
Rights and permissions
About this article
Cite this article
Guo, Yn., Fang, Mf. & Zeng, K. Entropic uncertainty relation in a two-qutrit system with external magnetic field and Dzyaloshinskii–Moriya interaction under intrinsic decoherence. Quantum Inf Process 17, 187 (2018). https://doi.org/10.1007/s11128-018-1945-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1945-3