Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states | Quantum Information Processing Skip to main content
Log in

Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper we propose two schemes for teleportation of a sub-class of tripartite states, the first one with the four-qubit cluster state and the second one with two Bell pairs as entanglement channels. A four-qubit joint measurement in the first case and two Bell measurements in the second are performed by the sender. Appropriate unitary operations on the qubits at the receiver’s end along with an ancilla qubit result in the perfect teleportation of the tripartite state. Analysis of the quantum circuits employed in these schemes reveal that in our technique the desired quantum tasks are achieved with lesser quantum cost, gate count and classical communication bits compared with other similar schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  3. Marinatto, L., Weber, T.: Found. Phys. Let 13, 119–132 (2000)

    Article  Google Scholar 

  4. Cao, Z.L., Song, W.: Teleportation of a two-particle entangled state via W class states. Physica A 347, 177–183 (2005)

    Article  ADS  Google Scholar 

  5. Cola, M.M., Paris, M.G.A.: Teleportation of bipartite states using a single entangled pair. Phys. Lett. A 337, 10–16 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chuang, L.D., Liang, C.Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464 (2007)

    Article  ADS  Google Scholar 

  7. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  8. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 6, 060502 (2006)

    Article  Google Scholar 

  9. Liu, J.M., Guo, G.C.: Quantum teleportation of a three-particle entangled state. Chin. Phys. Lett. 19, 456 (2002)

    Article  ADS  Google Scholar 

  10. Yin, X.F., Liu, Y.M., Zhang, Z.Y., Zhang, W., Zhang, Z.J.: Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state. Sci. China Phys. Mech. Astron. 53, 2059 (2010)

    Article  ADS  Google Scholar 

  11. Nie, Y., Li, Y., Liu, J., Sang, M.: Perfect teleportation of an arbitrary three-qubit state by using W-class states. Int. J. Theor. Phys. 50, 3225–3229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pradhan, B., Agrawal, P., Pati, A.K.: Teleportation and superdense coding with genuine quadripartite entangled states arXiv:0705.1917v1 [quant-ph] (2007)

  13. Nie, Y., Li, Y., Jin, C., Liu, J., Sang, M.: Quantum information splitting of an arbitrary multi-qubit GHZ-type state by using a four-qubit cluster state. Int. J. Theor. Phys. 50, 2799–2804 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Y., Li, X., Nie, L., Sang, M.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)

    Article  MATH  Google Scholar 

  15. Liu, Z., Zhou, L.: Quantum teleportation of a three-qubit state using a five-qubit cluster state. Int. J. Theor. Phys. 53, 4079–4082 (2014)

    Article  MATH  Google Scholar 

  16. Choudhury, B.S., Dhara, A.: Teleportation protocol of three-qubit state using four-qubit quantum channels. Int. J. Theor. Phys. 55, 3393–3399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wei, Z.-H., Zha, X.-W., Yu, Y.: Comment on ”Teleportation protocol of three-qubit state using four-qubit quantum channels”. Int. J. Theor. Phys. 55, 4687–4692 (2016)

    Article  MATH  Google Scholar 

  18. Cai, T., Jiang, M.: Improving the teleportation scheme of three-qubit state with a four-qubit quantum channel. Int. J. Theor. Phys. 57, 131–137 (2017). https://doi.org/10.1007/s10773-017-3547-8

    Article  MATH  Google Scholar 

  19. Zhang, Q.Y., Zhan, Y.B., Zhang, L.L., Ma, P.C.: Schemes for splitting quantum information via tripartite entangled states. Int. J. Theor. Phys. 48, 3331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 984 (2011)

    Article  MATH  Google Scholar 

  22. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

    Article  ADS  Google Scholar 

  23. Tan, X., Zhang, X., Fang, J.: Perfect teleportation by four-particle cluster state. Inf. Process. Lett. 116, 347–350 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Perkowski, M., et al.: A hierarchical approach to computer aided design of quantum circuits. In: Sixth International Symposium on Representations and Methodology of Future Computing Technology, pp. 201–209 (2003)

  25. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015)

    Article  ADS  Google Scholar 

  26. Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678–682 (2006)

    Article  Google Scholar 

  27. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Chen, L., She, W.: Teleportation of a controllable orbital angular momentum generator. Phys. Rev. A 80, 063831 (2009)

    Article  ADS  Google Scholar 

  29. Khoury, A.Z., Milman, P.: Quantum teleportation in the spin-orbit variables of photon pairs. Phys. Rev. A 83, 060301(R) (2011)

    Article  ADS  Google Scholar 

  30. Wang, X.-L., Cai, X.-D., Su, Z.-E., Chen, M.-C., Wu, D., Li, L., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Kerala State Council for Science, Technology and Environment for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dintomon Joy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, D., Sabir, M. Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states. Quantum Inf Process 17, 170 (2018). https://doi.org/10.1007/s11128-018-1937-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1937-3

Keywords

Navigation