Abstract
A generic behavior of quantum correlations during any quantum process taking place in a noisy environment is that they are non-increasing. We have shown that mitigation of these decreases providing relative enhancements in correlations is possible by means of quantum memory channels which model correlated environmental quantum noises. For two-qubit systems subject to mixtures of two-use actions of different decoherence channels we point out that improvement in correlations can be achieved in such way that the input-output fidelity is also as high as possible. These make it possible to create the optimal conditions in realizing any quantum communication task in a noisy environment.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information, 10 Anniversary edn. Cambridge University Press, Cambridge (2010)
DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)
Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7(1), 1–51 (2007)
Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)
Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2008)
Xu, J.-S., Xu, X.-Y., Li, C.-F., Zhang, C.-J., Zou, X.-B., Guo, G.-C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)
Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)
Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)
Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction. de Gruyter, Berlin (2012)
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Werner, R.F., Wolf, M.M.: Bell’s inequalities for states with positive partial transpose. Phys. Rev. A 61, 062102 (2000)
Terhal, B.M., Gerd, K., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)
Rungta, P., Caves, C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003)
Stinespring, W.F.: Positive functions on \(C^*\)-algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)
Kraus, K.: Effects and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics. Springer, Berlin (1983)
Macchiavello, C., Palma, G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301(R) (2002)
Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)
For any pure two-qubit state \(\rho =|\psi \rangle \langle \psi |\) the matrix \(T=\rho \tilde{\rho }\) is of the form \(T=\langle \tilde{\psi }|\psi \rangle |\psi \rangle \langle \tilde{\psi }|\) and obeys the equation \(T(T-|\langle \psi |\tilde{\psi }\rangle |^2)=0\). This shows that the only nonzero eigenvalue of \(T\) is \(|\langle \psi |\tilde{\psi }\rangle |^2\) and therefore \(C(\rho )=|\langle \psi |\tilde{\psi }\rangle |\)
Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323(5914), 598 (2009)
Yu, T., Eberly, J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283(5), 676–680 (2010)
Uhlmann, A.: The transition probability in the state space of a \(*\)-algebra. Rep. Math. Phys. 9(2), 273–279 (1976)
Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)
Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)
Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-qubit channels with memory. Phys. Rev. A 69, 010303(R) (2004)
Holevo, A.S.: Quantum coding theorems. Russ. Math. Surv. 53(6), 1295–1331 (1998)
Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15, 629 (2003)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)
Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Werlang, T., Souza, S., Fanchini, F.F., Villas-Bôas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)
Acknowledgements
This work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Duran, D., Verçin, A. Controlling the loss of quantum correlations via quantum memory channels. Quantum Inf Process 17, 164 (2018). https://doi.org/10.1007/s11128-018-1935-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1935-5