Abstract
In this paper we propose a game of a single qubit whose strategies can be implemented adiabatically. In addition, we show how to implement the strategies of a quantum game through controlled adiabatic evolutions, where we analyze the payment of a quantum player for various situations of interest: (1) when the players receive distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when the device that implements the strategy is inefficient. Through a graphical analysis, it is possible to notice that the curves that represent the gains of the players present a behavior similar to the curves that give rise to a phase transition in thermodynamics. These transitions are associated with optimal strategy changes and occur in the absence of entanglement and interaction between the players.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
dos Santos, T.B., Peixoto, P.E.: Agonistic interactions in the dragonfly Micrathyria ungulata: does male fighting investment come from an innate ability or an indomitable will? Behav. Ecol. Sociobiol. 71, 104 (2017)
Smith, J.M.: Evolution and the Theory of Games, vol. viii. Cambridge University Press, Cambridge (1982)
Morris, A., MacGlashan, J., Littman, M.L., Cushman, F.: Evolution of flexibility and rigidity in retaliatory punishment. PNAS 114, 10396–10401 (2017)
Rilling, J.K., Gutman, D.A., Zeh, T.R.: A neural basis for social cooperation. Neuron 35, 395–405 (2002)
Rilling, J.K., et al.: Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biol. Psychiat. 61, 1260–1271 (2007)
Kar, R.B.: The evolutionary game-theoretic foundations of law. Law Soc. Inq. 42, 38–48 (2017)
Fischer, I., Suleiman, R.: Election frequency and the emergence of cooperation in a simulated intergroup conflict. J. Confl. Resolut. 41, 483–508 (1997)
Streich, P., Levy, J.S.: Time horizons, discounting, and intertemporal choice. J. Confl. Resolut. 51, 199–226 (2007)
Chiu, C.-P., Lai, S.-K.: A comparison of regimes of policies: lessons from the two-person iterated prisoner’s dilemma game. Environ. Plan. B 35, 794–809 (2008)
Vassiliades, V., Cleanthous, A., Christodoulou, C.: Multiagent reinforcement learning: spiking and nonspiking agents in the iterated prisioner’s dilemma. IEEE Trans. Neural Netw. 22, 639–653 (2011)
Plous, S.: The nuclear arms race: prisoner’s dilemma or perceptual dilemma? J. Peace Res. 30, 163–179 (1993)
Pajunen, K.: Living in agreement with a contract: the management of moral and viable firm-stakeholder relationships. J. Bus. Ethics 68, 243–258 (2006)
Clempner, J.B.: A game theory model for manipulation based on machiavellianism: moral and ethical behavior. JASSS 20, 12 (2017)
Chiong, R., Wong, D.M.L., Jankovic, L.: Agent-based economic modelling with iterated prisioner’s dilemma. ICOCI 2006, 1–6 (2006)
Chiong, R.: Applying genetic algorithms to economy market using iterated prisoner’s dilemma. Appl. Comput. 1–2, 733–737 (2007)
Baxa, J., Brozova, H., Kvasnicka, R.: Cooperative behavior and economic growth. Math. Methods Econ. 2009, 13–18 (2009)
Perez-Castrillo, D., Sotomayor, M.: On the manipulability of competitive equilibrium rules in many-to-many buyer-seller markets. Int. J. Game Theory 46, 1137–1161 (2017)
Krach, S., et al.: Can machines think? Interaction and perspective taking with robots investigated via fMRI. Plos One 3(e2597), 1–11 (2008)
Asher, N., Paul, S., Venant, A.: Message exchange games in strategic contexts. J Philos Logic 46, 355–404 (2017)
Shinar, J.: Differential games and artificial intelligence-A new approach for solving complex dynamic conflicts. Lecture Notes in Control and Information Sciences 156, 100–110 (1991)
Basilico, N., Gatti, N., Amigoni, F.: Patrolling security games: definition and algorithms for solving large instances with single patroller and single intruder. Artif. Intell. 184, 78–123 (2012)
Kargarian, A., et al.: Artificial intelligence-based loss allocation algorithm in open access environment. J. Energy Eng. 140, 04013021 (2014)
Pease, A., et al.: Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artif. Intell. 246, 181–219 (2017)
Lee, C.F., Johnson, N.: Parrondo games and quantum algorithms, pp. 1–7 (2002). arxiv:quant-ph/0203043v1
Doscher, C., Keyl, M.: An introduction to quantum coin tossing. Fluct Noise Lett. 2, R125–R137 (2002)
Gogonea, V., Merz, K.M.: Fully quantum mechanical description of proteins in solution. Combining linear scaling quantum mechanical methodologies with the Poisson–Boltzmann equation. J. Phys. Chem. A 103, 5171–5188 (1999)
Berkley, A.J., et al.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23, 105014 (2010)
Johnson, M.W., et al.: A scalable control system for a superconducting adiabatic quantum optimization processor. ibid 23, 065004 (2010)
Barends, R., et al.: Digitized adiabatic quantum computing with a superconducting circuit. Nature 534, 222–226 (2016)
Boixo, S., et al.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218–224 (2014)
Friedenauer, A., et al.: Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757–761 (2008)
Kim, K., et al.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010)
Mitra, A., et al.: Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor. J. Magn. Reson. 177, 285–298 (2005)
Steffen, M., et al.: Experimental implementation of an adiabatic quantum optimization algorithm. Phys. Rev. Lett. 90, 067903 (2003)
Peng, X., et al.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101, 220405 (2008)
Xu, K., et al.: Experimental adiabatic quantum factorization under ambient conditions based on a solid-state single spin system. Phys. Rev. Lett. 118, 130504 (2017)
Klein, J., Beil, F., Halfmann, T.: Robust population transfer by stimulated raman adiabatic passage in a Pr\(_3\)+:Y\(_2\)SiO\(_5\) crystal. Phys. Rev. Lett. 99, 113003 (2007)
Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys. A Hadron Nucl. 51, 165–180 (1928)
Kato, T.: On the Adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435–439 (1950)
Messiah, A.: Quantum Mechanics. North-Holland, Amsterdam (1962)
Sarandy, M.S., Lidar, D.A.: Adiabatic approximation in open quantum systems. Phys. Rev. A 71, 012331 (2005)
Ambainis, A., Regev, O.: An elementary proof of the quantum adiabatic theorem, pp. 1–12 (2004). arxiv:quant-ph/0411152v2
Sarandy, M.S., Wu, L.-A., Lidar, D.A.: Consistency of the adiabatic theorem. Quantum Inf. Process. 3, 331–349 (2004)
Amin, M.: Consistency of the adiabatic theorem. Phys. Rev. Lett. 102, 220401 (2009)
Tong, D.M.: Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett. 104, 120401 (2010)
Du, J., et al.: Experimental study of the validity of quantitative conditions in the quantum adiabatic theorem. Phys. Rev. Lett. 101, 060403 (2008)
Du, J., Li, H., Xu, X., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36, 6551 (2003)
Hen, I.: Quantum gates with controlled adiabatic evolutions. Phys. Rev. A 91, 022309 (2015)
Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)
Sun, C.-P.: High-order adiabatic approximation for non-Hermitian quantum system and complexification of Berry’s phase. Phys. Scr. 48, 393 (1993)
Ibáñez, S., Muga, J.G.: Adiabaticity condition for non-Hermitian Hamiltonians. Phys. Rev. A 89, 033403 (2014)
Colin, E.C.: Pesquisa Operacional: 170 Aplicações em Estratégia, Finanças, Logística, Produção, Marketing e Vendas. LTC, Rio de Janeiro (2007)
Moreira, D.A.: Pesquisa Operacional: Curso Introdutório. Cengage Learning, São Paulo (2010)
Du, J., et al.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88, 137902 (2002)
Li, S.-B.: Simulation of continuous variable quantum games without entanglement. J. Phys. A Math. Theor. 44, 295302 (2011)
Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)
Acknowledgements
A.C.S. acknowledges financial support from the Brazilian agencies CNPq and the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ), and M. A. P. would like to thank God for the opportunity to do this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Ponte, M.A., Santos, A.C. Adiabatic quantum games and phase-transition-like behavior between optimal strategies. Quantum Inf Process 17, 149 (2018). https://doi.org/10.1007/s11128-018-1918-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1918-6