Abstract
We investigate cryptographic quantum parameter estimation with a high-dimensional system that allows only Bob (Receiver) to access the result and achieve optimal parameter precision from Alice (Sender). Eavesdropper (Eve) only can disturb the parameter estimation of Bob, but she cannot obtain the information of parameter. And Bob can still securely obtain a high-precision estimation of parameter by utilizing the parallel-entangled strategy and sequential strategy with a large repeat count of communication. We analyze the security and show that the high-dimensional system can help to utilize the resource to obtain better precision than the two-dimensional system. Finally, we generalize it to the case of multi-parameter.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)
Cheng, W.C., Aritsugi, M.: A user sensitive privacy-preserving location sharing system in mobile social networks. Procedia Comput. Sci. 35, 1692 (2014)
Dowling, J.P.: Quantum optical metrology-the lowdown on high-N00N states. Contemp. Phys. 49, 125 (2008)
Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-Enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)
Farace, A., De Pasquale, A., Adesso, G., Giovannetti, V.: Building versatile bipartite probes for quantum metrology. New J. Phys. 18, 013049 (2016)
Unden, T., Balasubramanian, P., Louzon, D., Vinkler, Y., Plenio, Martin B., Markham, Matthew, Twitchen, Daniel, Lovchinsky, Igor, Sushkov, Alexander O., Lukin, Mikhail D., Retzker, Alex, Naydenov, Boris, Mcguinness, Liam P., Jelezko, Fedor: Quantum metrology enhanced by repetitive quantum error correction. Phys. Rev. Lett. 116, 230502 (2016)
Xie, D., Xu, C., Wang, A.M.: Quantum metrology in coarsened measurement reference. Phys. Rev. A 95, 012117 (2017)
Giovannetti, V., Lloyd, S., Maccone, L.: Positioning and clock synchronization through entanglement. Phys. Rev. A 65, 022309 (2002)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced positioning and clock synchronization. Nature 412, 417 (2001)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum cryptographic ranging. J. Opt. B Quantum Semiclassical Opt. 4, 413 (2002)
Chiribella, G., Maccone, L., Perinotti, P.: Secret quantum communication of a reference frame. Phys. Rev. Lett. 98, 120501 (2007)
Huang, Z., Macchiavello, C., Maccone, L.: Cryptographic quantum metrology. arXiv:1706.03894v1 (2017)
Cramér, H.: Mathematical Methods of Statistics. Princeton University, Princeton (1946)
Rao, C.R.: Linear Statistical Inference and Its Applications. Wiley, New York (1973)
Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)
Bell, B., Kannan, S., McMillan, A., Clark, A.S., Wadsworth, William J., Rarity, John G.: Multicolor quantum metrology with entangled photons. Phys. Rev. Lett. 111, 093603 (2013)
Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)
Zhang, L., Chan, K.W.C.: Quantum multiparameter estimation with generalized balanced multimode NOON-like states. Phys. Rev. A 95, 032321 (2017)
Liu, N., Cable, H.: Quantum-enhanced multi-parameter estimation for unitary photonic systems. Quantum Sci. Technol. 2, 2 (2017)
Szczykulska, M., Baumgratz, T., Datta, A.: Multi-parameter quantum metrology. Adv. Phys. X 1, 621 (2016)
Knott, P.A., Proctor, T.J., Hayes, A.J., Ralph, J.F., Kok, P., Dunningham, J.A.: Local versus global strategies in multiparameter estimation. Phys. Rev. A 94, 062312 (2016)
Young, K.C., Sarovar, M., Kosut, R., Whaley, K.B.: Optimal quantum multiparameter estimation and application to dipole- and exchange-coupled qubits. Phys. Rev. A 79, 062301 (2009)
Dorner, U., Demkowicz-Dobrzanski, R., Smith, B., Lundeen, J., Wasilewski, W., Banaszek, K., Walmsley, I.: Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009)
Knysh, S.I., Durkin, G.A.: Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise. arXiv:1307.0470 (2013)
Acknowledgements
This research was supported by the National Natural Science Foundation of China under Grant No. 11747008, Guangxi Natural Science Foundation 2016GXNSFBA380227 and Guangxi Base Promotion Project of Young and Middle-aged Teachers (NO.2017KY0857).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xie, D., Xu, C., Chen, J. et al. High-dimensional cryptographic quantum parameter estimation. Quantum Inf Process 17, 116 (2018). https://doi.org/10.1007/s11128-018-1884-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1884-z