High-dimensional cryptographic quantum parameter estimation | Quantum Information Processing Skip to main content

Advertisement

Log in

High-dimensional cryptographic quantum parameter estimation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate cryptographic quantum parameter estimation with a high-dimensional system that allows only Bob (Receiver) to access the result and achieve optimal parameter precision from Alice (Sender). Eavesdropper (Eve) only can disturb the parameter estimation of Bob, but she cannot obtain the information of parameter. And Bob can still securely obtain a high-precision estimation of parameter by utilizing the parallel-entangled strategy and sequential strategy with a large repeat count of communication. We analyze the security and show that the high-dimensional system can help to utilize the resource to obtain better precision than the two-dimensional system. Finally, we generalize it to the case of multi-parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Cheng, W.C., Aritsugi, M.: A user sensitive privacy-preserving location sharing system in mobile social networks. Procedia Comput. Sci. 35, 1692 (2014)

    Article  Google Scholar 

  4. Dowling, J.P.: Quantum optical metrology-the lowdown on high-N00N states. Contemp. Phys. 49, 125 (2008)

    Article  ADS  Google Scholar 

  5. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  6. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-Enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  8. Farace, A., De Pasquale, A., Adesso, G., Giovannetti, V.: Building versatile bipartite probes for quantum metrology. New J. Phys. 18, 013049 (2016)

    Article  ADS  Google Scholar 

  9. Unden, T., Balasubramanian, P., Louzon, D., Vinkler, Y., Plenio, Martin B., Markham, Matthew, Twitchen, Daniel, Lovchinsky, Igor, Sushkov, Alexander O., Lukin, Mikhail D., Retzker, Alex, Naydenov, Boris, Mcguinness, Liam P., Jelezko, Fedor: Quantum metrology enhanced by repetitive quantum error correction. Phys. Rev. Lett. 116, 230502 (2016)

    Article  ADS  Google Scholar 

  10. Xie, D., Xu, C., Wang, A.M.: Quantum metrology in coarsened measurement reference. Phys. Rev. A 95, 012117 (2017)

    Article  ADS  Google Scholar 

  11. Giovannetti, V., Lloyd, S., Maccone, L.: Positioning and clock synchronization through entanglement. Phys. Rev. A 65, 022309 (2002)

    Article  ADS  Google Scholar 

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced positioning and clock synchronization. Nature 412, 417 (2001)

    Article  ADS  Google Scholar 

  13. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum cryptographic ranging. J. Opt. B Quantum Semiclassical Opt. 4, 413 (2002)

    Article  ADS  Google Scholar 

  14. Chiribella, G., Maccone, L., Perinotti, P.: Secret quantum communication of a reference frame. Phys. Rev. Lett. 98, 120501 (2007)

    Article  ADS  Google Scholar 

  15. Huang, Z., Macchiavello, C., Maccone, L.: Cryptographic quantum metrology. arXiv:1706.03894v1 (2017)

  16. Cramér, H.: Mathematical Methods of Statistics. Princeton University, Princeton (1946)

    MATH  Google Scholar 

  17. Rao, C.R.: Linear Statistical Inference and Its Applications. Wiley, New York (1973)

    Book  MATH  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Bell, B., Kannan, S., McMillan, A., Clark, A.S., Wadsworth, William J., Rarity, John G.: Multicolor quantum metrology with entangled photons. Phys. Rev. Lett. 111, 093603 (2013)

    Article  ADS  Google Scholar 

  20. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  21. Zhang, L., Chan, K.W.C.: Quantum multiparameter estimation with generalized balanced multimode NOON-like states. Phys. Rev. A 95, 032321 (2017)

    Article  ADS  Google Scholar 

  22. Liu, N., Cable, H.: Quantum-enhanced multi-parameter estimation for unitary photonic systems. Quantum Sci. Technol. 2, 2 (2017)

    Article  Google Scholar 

  23. Szczykulska, M., Baumgratz, T., Datta, A.: Multi-parameter quantum metrology. Adv. Phys. X 1, 621 (2016)

    Google Scholar 

  24. Knott, P.A., Proctor, T.J., Hayes, A.J., Ralph, J.F., Kok, P., Dunningham, J.A.: Local versus global strategies in multiparameter estimation. Phys. Rev. A 94, 062312 (2016)

    Article  ADS  Google Scholar 

  25. Young, K.C., Sarovar, M., Kosut, R., Whaley, K.B.: Optimal quantum multiparameter estimation and application to dipole- and exchange-coupled qubits. Phys. Rev. A 79, 062301 (2009)

    Article  ADS  Google Scholar 

  26. Dorner, U., Demkowicz-Dobrzanski, R., Smith, B., Lundeen, J., Wasilewski, W., Banaszek, K., Walmsley, I.: Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009)

    Article  ADS  Google Scholar 

  27. Knysh, S.I., Durkin, G.A.: Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise. arXiv:1307.0470 (2013)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant No. 11747008, Guangxi Natural Science Foundation 2016GXNSFBA380227 and Guangxi Base Promotion Project of Young and Middle-aged Teachers (NO.2017KY0857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, D., Xu, C., Chen, J. et al. High-dimensional cryptographic quantum parameter estimation. Quantum Inf Process 17, 116 (2018). https://doi.org/10.1007/s11128-018-1884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1884-z

Keywords

Navigation