Abstract
The theory of entanglement-assisted quantum error-correcting codes (EAQECCs) is a generalization of the standard stabilizer formalism. Any quaternary (or binary) linear code can be used to construct EAQECCs under the entanglement-assisted (EA) formalism. We derive an EA-Griesmer bound for linear EAQECCs, which is a quantum analog of the Griesmer bound for classical codes. This EA-Griesmer bound is tighter than known bounds for EAQECCs in the literature. For a given quaternary linear code \(\mathcal {C}\), we show that the parameters of the EAQECC that EA-stabilized by the dual of \(\mathcal {C}\) can be determined by a zero radical quaternary code induced from \(\mathcal {C}\), and a necessary condition under which a linear EAQECC may achieve the EA-Griesmer bound is also presented. We construct four families of optimal EAQECCs and then show the necessary condition for existence of EAQECCs is also sufficient for some low-dimensional linear EAQECCs. The four families of optimal EAQECCs are degenerate codes and go beyond earlier constructions. What is more, except four codes, our \([[n,k,d_{ea};c]]\) codes are not equivalent to any \([[n+c,k,d]]\) standard QECCs and have better error-correcting ability than any \([[n+c,k,d]]\) QECCs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)
Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)
Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)
Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. A 55, 1862–1868 (1996)
Gottesman, D.: Stabilizer codes and quantum error correction, Ph.D. Thesis, California Institute of Technology. quant-ph/9707027 (1997)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error-correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)
Rains, E.M.: Quantum shadow enumerators. IEEE Trans. Inf. Theory 45, 2361–2366 (1999)
Ashikhmin, A., Litsn, S.: Upper bounds on the size of quantum codes. IEEE Trans. Inf. Theory 45, 1206–1215 (1999)
MacKay, D.J.C., Mitchison, G., McFadden, P.L.: Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory 50, 2315–2330 (2004)
Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 60, 052313 (2002)
Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)
Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013). See also arXiv:1008.2598v1
Hsieh, M.H., Devetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)
Hsieh, M.H.: Entanglement-assisted quantum coding theory. arXiv:0807.2080v2 (2008)
Wilde, M.M.: Quantum coding with entanglement. arXiv:0806.4212 (2008)
Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)
Hsieh, M.H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasicyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009)
Li, R.: Introduction to entanglement-assisted quantum coding theory (2010, unpublished data)
Fujiwara, Y., Clark, D., Vandendriessche, P., De Boeck, M., Tonchev, V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82, 042338 (2010)
Hsieh, M.H., Yen, W.T., Hsu, L.Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57, 1761–1769 (2011)
Lai, C.Y., Brun, T.A., Wilde, M.M.: Dualities and identities for entanglement-assisted quantum codes. arXiv:1010.5506v2 (2011)
Lai, C.Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59, 4020–4024 (2013)
Fujiwara, Y., Tonchev, V.D.: A characterization of entanglement-assisted quantum low-density parity-check codes. IEEE Trans. Inf. Theory 59, 3347–3353 (2013)
Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)
Li, R., Guo, L., Xu, Z.: Entanglement-assisted quantum codes achieving the Singleton bound and violating the Hamming bound. Quantum Inf. Comput. 13–14, 1107–1116 (2014)
Fujiwara, Y.: Quantum error correction via less noisy qubits. Phys. Rev. Lett. 110, 170501 (2013)
Shin, J., Heo, J., Brun, T.A.: General quantum error-correcting code with entanglement based on code-word stabilized quantum code. arXiv:1311.1533 (2013)
Luo, Z., Devetak, I.: Efficiently implementable codes for quantum key expansion. Phys. Rev. A 75(1), 010303 (2007)
Hsu, K.-C., Brun, T.A.: Family of finite geometry low-density paritycheck codes for quantum key expansion. Phys. Rev. A 87(1), 062332 (2013)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference Computers, Systems and Signal Processing, pp. 175C179 (Bangalore, India) (1984)
Wilde, Mark M., Fattal, David: Nonlocal quantum information in bipartite quantum error correction. Quantum Inf. Process. 9, 591–610 (2010)
Griesmer, J.H.: A bound for error-correcting codes. IBM J. Res. Dev. 4, 532–542 (1960)
Solomon, G., Stiffler, J.J.: Algebraically punctured cyclic codes. Inf. Control 8, 170–179 (1965)
Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. (2014). doi:10.1007/s11128-014-0830-y
Sarvepalli, P., Klappenecker, A.: Degenerate quantum codes and the quantum Hamming bound. Phys. Rev. A 81, 032318 (2010)
Wan, Z.: Geometry of Classical Groups over Finite Fields. Chart Well Bratt, Lund (1993)
Huffman, W.C.: On the classification and enumeration of self-dual codes. Finite Fields Appl. 11, 451–490 (2005)
Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed on 26 May 2014
Baumert, L.D., McEliece, R.J.: A note on the Griesmer bound. IEEE Trans. Inf. Theory 9, 134–135 (1973)
Li, R., Lu, L., Guo, L.: Optimal quaternary codes with given radical dimension (2013, unpublished data)
Acknowledgments
We are indebted to the anonymous reviewers for constructive comments and suggestions on our manuscript, which improve the manuscript significantly. Part of this work was carried out while R. Li was visiting the Chern Institute of Mathematics (CIM) at Nankai University, Tianjin, China. R. Li is grateful to the Institute for the kind hospitality. The research is supported by National Natural Science Foundation of China under Grant No.11471011 and the National Key Basic Research Program of China (“973” program) under Grant No. 2013CB834204.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix A: Proof of Theorem 4.3
Proof
To prove Theorem 4.3, we give our discussion in three steps. Firstly, we construct \(B_{3,i}\) for \(1\le i\le 20\), such that \(G_{5,n}=(G_{5,8}\mid B_{5,i})\) generates a code \(\mathcal {C}_{n}\) and \(R(\mathcal {C}_{n})\) is a two-dimensional code with weight polynomial \(W_{1,n}(z)=1+6z^{4}+9z^{8}\). The matrices \(B_{3,i}\) for \(1\le i\le 20\) are as follows:
Secondly, using the matrices \(B_{3,i}\) for \(1\le i\le 20\), we construct \(G_{5,n}\) for \(n\ge 9\) as follows:
-
(1)
If \(n=21t+i\ge 9\) and \(0\le i\le 7\), construct \(G_{5,n}=(G_{5,8}\mid B_{5,13+i}\mid (t-1)D_{5,21})\).
-
(2)
\(n=21t+i\ge 9\) and \(8\le i\le 20\), construct \(G_{5,n}=(G_{5,8}\mid B_{5,i-8}\mid tD_{5,21})\).
Let \(\mathcal {C}_{n}\) be the code generated by \(G_{5,n}\), the weight polynomial of \(\mathcal {C}_{n}\) be \(W_{n}(z)\) for \(n\ge 9\). Then \(R(\mathcal {C}_{n})\) is a two-dimensional code with weight polynomial \(W_{R}(z)=1+6z^{4}+9z^{8}\), and all the weight polynomials of these \(W_{n}(z)\) can be derived from \(W_{j}(z)\) for \(8\le j\le 28\). It is not difficult to check \(W_{j}(z)\)’ for \(8\le j\le 28\) are as follows:
For \(n=21t+i>28\), from the construction of \(G_{5,n}\), we can deduce weight polynomial \(W_{n}(z)\) of \(\mathcal {C}_{n}\) must be: \(W_{21t+i}(z)=1+6z^{4}+9z^{8}+(W_{21+i}(z)-W_{R}(z))z^{16(t-1)}\) for \(0\le i\le 7\), and \(W_{21t+i}(z)=1+6z^{4}+9z^{8}+(W_{i}(z)-W_{R}(z))z^{16t}\) for \(8\le i\le 20\).
Thirdly, from \(W_{n}(z)\) of \(\mathcal {C}_{n}\) (\(n\ge 9\)), one can deduce the minimal weight \(d_{ea}(n)\)’ of \(\mathcal {C}_{n}\setminus R(\mathcal {C}_{n})\) for \(n=21t+i\), where \(d_{ea}(n)\)’ are as follows:
It is trivial to verify the EAQECCs \([[21t+5,3,16t+1;21t-2]], [[21t+6,3,16t+2;21t-1]]\) and \([[21t+7,3,16t+3;21t]]\) for \(t\ge 1, [[21t+10,3,16t+5;21t+3]], [[21t+11,3,16t+6;21t+4]], [[21t+15,3,16t+9;21t+8]]\) and \([[21t+20,3,16t+13;21t+13]]\) for \(t\ge 0\) achieve the EA-Griesmer bound. The EAQECCs \([[21t,3,16t-3;21t-7]], [[21t+1,3,16t-2;21t-6]], [[21t+2,3,16t-1;21t-5]]\) and \([[21t+8,3,16t+3;21t+1]]\) for \(t\ge 1, [[21t+9,3,16t+4;21t+2]], [[21t+12,3,16t+6;21t+5]], [[21t+13,3,16t+7;21t+6]], [[21t+14,3,16t+8;21t+7]], [[21t+16,3,16t+9;21t+9]], [[21t+17,3,16t+10;21t+10]], [[21t+18,3,16t+11;21t+11]]\) and \([[21t+19,3,16t+12;21t+12]]\) for \(t\ge 0\) are optimal codes and have lengths one above the EA-Griesmer bound. The EAQECCs \([[21t+3,3,16t-1;21t-4]]\) and \([[21t+4,3,16t;21t-3]]\) are optimal codes and have lengths two above the EA-Griesmer bound.
Summarizing the above discussions, the theorem follows.
Appendix B: Proof of Theorem 4.4
Proof
To prove Theorem 4.4, we give our discussion in three steps. Firstly, we construct \(D_{3,i}\) for \(1\le i\le 21\), such that \(G_{6,n}=(G_{6,12}\mid D_{6,i})\) generates a code \(\mathcal {C}_{n}\) and \(R(\mathcal {C}_{n})\) is a three-dimensional code with weight polynomial \(W_{R}(z)=1+9z^{4}+27z^{8}+27z^{12}\). Let \(D_{3,21}=S_{3}\) and construct the matrices \(D_{3,i}\) for \(1\le i\le 20\) as follows:
Secondly, using the matrices \(D_{3,i}\) for \(1\le i\le 21\), we construct \(G_{6,n}\) for \(n\ge 12\) as follows.
-
(1)
If \(n=21t+i\ge 12\) and \(0\le i\le 11\), construct \(G_{6,n}=(G_{6,12}\mid D_{6,9+i}\mid (t-1)D_{6,21})\).
-
(2)
\(n=21t+i\ge 12\) and \(12\le i\le 20\), construct \(G_{6,n}=(G_{6,12}\mid D_{6,i-12}\mid tD_{6,21})\).
Let \(\mathcal {C}_{n}\) be the code generated by \(G_{6,n}\), the weight polynomial of \(\mathcal {C}_{n}\) be \(W_{6,n}(z)\) for \(n\ge 12\). Then \(R(\mathcal {C}_{n})\) is a three-dimensional code with weight polynomial \(W_{R}(z)=1+9z^{4}+27z^{8}+27z^{12}\), and all the weight polynomials of these \(W_{n}(z)\) can be derived from \(W_{6,j}(z)\) for \(12\le j\le 32\). It is not difficult to check \(W_{6,j}(z)\)’s for \(12\le j\le 32\) are as follows:
Thirdly, from the weight polynomial \(W_{6, n}(z)\) of \(\mathcal {C}_{n}\) with \( n\ge 12\), one can deduce the minimal weight \(d_{ea}(n)\)’ of \(\mathcal {C}_{n}\setminus R(\mathcal {C}_{n})\) for \(n=21t+i\) is as follows:
It is trivial to verify the EAQECCs \([[21t,3,16(t-1)+13;21t-3]], [[21t+6,3,16t+1;21t-3]], [[21t+7,3,16t+3;21t-2]], [[21t+8,3,16t+3;21t-1]]\) and \([[21t+11,3,16t+5;21t+2]]\) for \(t\ge 1, [[21t+12,3,16t+6;21t+3]]\) and \([[21t+16,3,16t+9;21t+7]]\) for \(t\ge 0\) achieve the EA-Griesmer bound. The EAQECCs \([[21t+1,3,16t-3;21t-8]], [[21t+2,3,16t-2;21t-7]], [[21t+3,3,16t-1;21t-6]]\), \([[21t+9,3,16t+3;21t]]\) and \([[21t+10,3,16t+4;21t+1]]\) for \(t\ge 1\), and \([[21t+13,3,16t+6;21t+4]], [[21t+14,3,16t+7;21t+5]], [[21t+15,3,16t+8;21t+6]], [[21t+17,3,16t+9;21t+8]], [[21t+18,3,16t+10;21t+9]], [[21t+19,3,16t+11;21t+10]]\) and \([[21t+20,3,16t+12;21t+11]]\) for \(t\ge 0\) are optimal codes and have lengths one above the EA-Griesmer bound. The EAQECCs \([[21t+4,3,16t-1;21t-5]]\) and \([[21t+5,3,16t;21t-4]]\) are optimal codes and have lengths two above the EA-Griesmer bound. Summarizing the above discussions, the theorem follows.
Rights and permissions
About this article
Cite this article
Li, R., Li, X. & Guo, L. On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound. Quantum Inf Process 14, 4427–4447 (2015). https://doi.org/10.1007/s11128-015-1143-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1143-5