Experimental implementation of a nonthermalizing quantum thermometer | Quantum Information Processing Skip to main content
Log in

Experimental implementation of a nonthermalizing quantum thermometer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on a quantum interferometric circuit, we implement a NMR quantum thermometer, in which a probe qubit measures the temperature of a nuclear spin at thermal equilibrium with a bath. The whole procedure lasts 5.5 ms, a much shorter time than the probe’s spin-lattice relaxation time, which is \(T_{1}=7.0\,\hbox {s}\). The fidelity of the probe final quantum state, in respect to the ideal theoretical prediction, is above 99 %. We show that quantum coherence is essential for the high fidelity of temperature measurement. We discuss the source of errors on the temperature measurement and some possible applications of the thermometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Stace, T.M.: Quantum limits of thermometry. Phys. Rev. A 82, 011611 (2010)

    Article  ADS  Google Scholar 

  2. Brunelli, M., Olivares, S., Paternostro, M., Paris, M.G.A.: Qubit-assisted thermometry of a quantum harmonic oscillator. Phys. Rev. A 86, 012125 (2012)

    Article  ADS  Google Scholar 

  3. Martín-Martínez, E., Dragan, A., Mann, R.B., Fuentes, I.: Berry phase quantum thermometer. New J. Phys. 15, 053036 (2013)

    Article  ADS  Google Scholar 

  4. Higgins, K.D.B., Lovett, B.W., Gauger, E.M.: Quantum thermometry using the ac Stark shift within the Rabi model. Phys. Rev. B 88, 155409 (2013)

    Article  ADS  Google Scholar 

  5. Neumann, P., Jakobi, I., Dolde, F., Burk, C., Reuter, R., Waldherr, G., Honert, J., Wolf, T., Brunner, A., Shim, J.H., Suter, D., Sumiya, H., Isoya, J., Wrachtrup, J.: High-precision nanoscale temperature sensing using single defects in diamond. Nano Letters 13, 2738 (2013)

    Article  ADS  Google Scholar 

  6. Toyli, D.M., de las Casas, C.F., Christle, D.J., Dobrovitskib, V.V., Awschalom, D.D.: Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. PNAS 110, 8417 (2013)

    Article  ADS  Google Scholar 

  7. Souza, A.M., Oliveira, I.S., Sarthour, R.S.: A scattering quantum circuit for measuring Bell’s time inequality: a nuclear magnetic resonance demonstration using maximally mixed states. New J. Phys. 13, 053023 (2011)

    Article  ADS  Google Scholar 

  8. Negrevergne, C., Somma, R., Ortiz, G., Knill, E., Laflamme, R.: Liquid-state NMR simulations of quantum many-body problems. Phys. Rev. A 71, 032344 (2005)

    Article  ADS  Google Scholar 

  9. Leonhardt, U.: Quantum-state tomography and discrete Wigner function. Phys. Rev. Lett. 74, 4101 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Miquel, C., Paz, J.P., Saraceno, M., Knill, E., Laflamme, R., Negrevergne, C.: Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature 418, 59–62 (2002)

    Article  ADS  Google Scholar 

  11. Batalhão, T., Souza, A.M., Mazzola, L., Auccaise, R., Oliveira, I.S., Goold, J., Chiara, G.D., Paternostro, M., Serra, R.M.: Experimental reconstruction of work distribution and verification of fluctuation relations at the full quantum level. Phys. Rev. Lett. 113, 140601 (2014)

  12. Oliveira, I.S., Bonagamba, T.J., Sarthour, R.S., Freitas, J.C.C., de Azevedo, E.R.: NMR Quantum Information Processing. Elsevier, Amsterdam (2007)

    Google Scholar 

  13. Fukushima, E., Roeder, S.B.W.: Experimental Pulse NMR. Addison-Wesley Publishing Company, London (1993)

    Google Scholar 

  14. Lee, J.-S.: The quantum state tomography on an NMR system. Phys. Lett. A 305, 349–353 (2002)

    Article  ADS  MATH  Google Scholar 

  15. Raiford, D.S., Fisk, C.L., Becker, E.D.: Calibration of methanol and ethylene glycol nuclear magnetic resonance thermometers. Anal. Chem. 51, 2050 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge suggestions from E. R. de Azevedo and S. O. Soares-Pinto from USP/São Carlos, and from L. C. Céleri from UFG, and financial support from CAPES, FAPERJ, and INCT of Quantum Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Raitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raitz, C., Souza, A.M., Auccaise, R. et al. Experimental implementation of a nonthermalizing quantum thermometer. Quantum Inf Process 14, 37–46 (2015). https://doi.org/10.1007/s11128-014-0858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0858-z

Keywords

Navigation