Abstract
We propose a scheme for detecting noncommutative feature of the non-Abelian geometric phase in circuit QED, which involves three transmon qubits capacitively coupled to an one-dimensional transmission line resonator. By controlling the external magnetic flux of the transmon qubits, we can obtain an effective tripod interaction of our circuit QED setup. The noncommutative feature of the non-Abelian geometric phase is manifested that for an initial state undergo two specific loops in different order will result in different final states. Our numerical calculations show that this difference can be unambiguously detected in the proposed system.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)
Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)
Carollo, A., Fuentes-Guridi, I., Santos, M.F., Vedral, V.: Geometric phase in open systems. Phys. Rev. Lett. 90, 160402 (2003)
De Chiara, G., Palma, G.M.: Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett. 91, 090404 (2003)
Carollo, A., Fuentes-Guridi, I., Santos, M.F., Vedral, V.: Spin-1/2 geometric phase driven by decohering quantum fields. Phys. Rev. Lett. 92, 020402 (2004)
Solinas, P., Zanardi, P., Zanghi, N.: Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A 70, 042316 (2004)
Fuentes-Guridi, I., Girelli, F., Livine, E.: Holonomic quantum computation in the presence of decoherence. Phys. Rev. Lett. 94, 020503 (2005)
Zhu, S.-L., Zanardi, P.: Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A 72, 020301(R) (2005)
Filipp, S., et al.: Experimental demonstration of the stability of Berry’s phase for a spin-1/2 particle. Phys. Rev. Lett. 102, 030404 (2009)
Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)
Pachos, J., Zanardi, P., Rasetti, M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305(R) (1999)
Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature (London) 403, 869–871 (2000)
Duan, L.-M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)
Zhu, S.-L., Wang, Z.D.: Unconventional geometric quantum computation. Phy. Rev. Lett. 91, 187902 (2003)
Zhu, S.-L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)
Xue, Z.-Y., Wang, Z.D.: Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity. Phys. Rev. A 75, 064303 (2007)
Xue, Z.-Y., Wang, Z.D., Zhu, S.-L.: Physical implementation of topologically decoherence-protected superconducting qubits. Phys. Rev. A 77, 024301 (2008)
Xue, Z.-Y.: Fast geometric gate operation of superconducting charge qubits in circuit QED. Quantum Inf. Process. 11, 1381–1388 (2012)
Tycko, R.: Adiabatic rotational splittings and Berry’s phase in nuclear quadrupole resonance. Phys. Rev. Lett. 58, 2281–2284 (1987)
Anandan, J., Christian, J., Wanelik, K.: Resource Letter GPP-1: geometric phases in physics. Am. J. Phys. 65, 180–185 (1997)
Leek, P.J., et al.: Observation of Berry’s phase in a solid-state qubit. Science 318, 1889 (2007)
Möttönen, M., Vartiainen, J.J., Pekola, J.P.: Experimental determination of the Berry phase in a superconducting charge pump. Phys. Rev. Lett. 100, 177201 (2008)
Leibfried, D., et al.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature (London) 422, 412–415 (2003)
Unanyan, R.G., Shore, B.W., Bergmann, K.: Laser-driven population transfer in four-level atoms: consequences of non-Abelian geometrical adiabatic phase factors. Phys. Rev. A 59, 2910–2919 (1999)
Ruseckas, J., Juzeliūnas, G., Öhberg, P., Fleischhauer, M.: Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Phys. Rev. Lett. 95, 010404 (2005)
Zhang, X.-D., Wang, Z.D., Hu, L.-B., Zhang, Z.-M., Zhu, S.-L.: Detecting unambiguously non-Abelian geometric phases with trapped ions. New J. Phys. 10, 043031 (2008)
Du, Y.-X., Xue, Z.-Y., Zhang, X.-D., Yan, H.: Detecting non-Abelian geometric phases with three-level \(\Lambda \) systems. Phys. Rev. A 84, 034103 (2011)
Sjöqvist, E., Tong, D.M., Andersson, L.M., Hessmo, B., Johansson, M., Singh, K.: Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)
Johansson, M., Sjöqvist, E., Andersson, L.M., Ericsson, M., Hessmo, B., Singh, K., Tong, D.M.: Robustness of nonadiabatic holonomic gates. Phys. Rev. A 86, 062322 (2012)
Feng, Z.-B., Zhang, Y.-M., Wang, G.-Z., Han, H.: Detecting non-Abelian geometric phases with superconducting nanocircuits. Phys. E 41, 1859–1863 (2009)
You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)
You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42–47 (2005)
Buluta, I., Nori, F.: Quantum simulators. Science 326, 108–111 (2009)
Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)
Schoelkopf, R.J., Girvin, S.M.: Wiring up quantum systems. Nature (London) 451, 664–669 (2008)
Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)
Reed, M.D., et al.: Realization of three-qubit quantum error correction with superconducting circuits. Nature (London) 482, 382–385 (2012)
DiCarlo, L., et al.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature (London) 467, 574–578 (2010)
Neeley, M., et al.: Generation of three-qubit entangled states using superconducting phase qubits. Nature (London) 467, 570–573 (2010)
Kamleitner, I., Solinas, P., Müller, C., Shnirman, A., Möttönen, M.: Geometric quantum gates with superconducting qubits. Phys. Rev. B 83, 214518 (2011)
Koch, J., et al.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)
You, J.Q., Hu, X., Ashhab, S., Nori, F.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515(R) (2007)
Day, P.K., LeDuc, H.G., Mazin, B.A., Vayonakis, A., Zmuidzinas, J.: A broadband superconducting detector suitable for use in large arrays. Nature (London) 425, 817–821 (2003)
Acknowledgments
This work was supported by the NFRPC (No. 2013CB921804), the NSFC (No. 11004065), the PCSIRT, the NSF of Guangdong Province, and the Program of the Education Department of Anhui Province (No. KJ2012B075).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Peng, ML., Zhou, J. & Xue, ZY. Detecting non-Abelian geometric phase in circuit QED. Quantum Inf Process 12, 2739–2747 (2013). https://doi.org/10.1007/s11128-013-0560-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0560-6