A centralized quantum switch network based on probabilistic channels | Quantum Information Processing Skip to main content
Log in

A centralized quantum switch network based on probabilistic channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a practical scheme for deterministically teleporting quantum information via probabilistic communication channels in a centralized quantum switch network. In the network, a central quantum switch agent is assigned for regulating probabilistic channels so as to construct a direct deterministic channel between the sender and the receiver. This scheme is further extended to a hierarchical network and a tree network involving multiple agents. The advantage of the scheme is that all required multi qubit gates from distributed terminal agents are uniformly performed by a central agent, with which the physical design of terminal nodes is greatly simplified and more reliable deterministic teleportation can be realized in a centralized quantum probabilistic network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information, 1st edn. University Press, UK (2000)

    MATH  Google Scholar 

  2. Bennett C.H. et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bouwmeester D., Pan J.W. et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Riebe M. et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  5. Barrett M.D. et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  Google Scholar 

  6. Olmschenk S. et al.: Quantum teleportation between distant matter qubits. Science 23, 486–489 (2009)

    Article  ADS  Google Scholar 

  7. Adhikari S. et al.: Teleportation via maximally and non-maximally entangled mixed states. Quantum Inf. Comput. 10, 398–419 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Choudhury S. et al.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A. Math. Theor. 42, 115303 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Jung E. et al.: Three-party entanglement in tripartite teleportation scheme through noisy channels. Quantum Inf. Comput. 10, 377–397 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Xia Y., Song J., Song H.S.: Quantum state sharing using linear optical elements. Opt. Commun. 281, 4946 (2008)

    Article  ADS  Google Scholar 

  11. Wang Z.Y., Liu Y.M., Zhang Z.J.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276, 322 (2007)

    Article  ADS  Google Scholar 

  12. Shi R.H. et al.: Efficient multi-party quantum state sharing of an arbitrary two-qubit state. Opt. Commun. 283, 2762 (2010)

    Article  ADS  Google Scholar 

  13. Wan T.Y. et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130 (2008)

    Article  ADS  Google Scholar 

  14. Gisin N., Thew R.: Quantum communication. Nat. Photon. 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  15. Jin X.M. et al.: Experimental free-space quantum teleportation. Nat. Photon. 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  16. Deng F.G. et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  17. Cirac J.I. et al.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  18. Yang C.P., Chu S.I., Han S.Y.: Efficient many-party controlled teleportation of multi qubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)

    Article  ADS  Google Scholar 

  19. Pati A.K., Agrawal P.: Probabilistic teleportation of a qudit. Phys. Lett. A 371, 185–189 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. An N.B.: Probabilistic teleportation of an M-quNit state by a single non-maximally entangled quNit-pair. Phys. Lett. A 372, 3778–3783 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Gao T., Yan F.L., Wang Z.X.: Quantum logic networks for probabilistic teleportation of many particle state of general form. Quantum Inf. Comput. 4, 186–195 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Lee S., Park J.: Three methods to distill multipartite entanglement over bipartite noisy channels. Phys. Lett. A 372, 3157–3161 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Yan F.L., Wang D.: Probabilistic and controlled teleportation of unknown quantum state. Phys. Lett. A 316, 297–303 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Cao Z.L., Zhao Y., Yang M.: Probabilistic teleportation of unknown atomic states using non-maximally entangled states without Bell-state measurement. Phys. A 360, 17–20 (2006)

    Article  MathSciNet  Google Scholar 

  25. Yan F.L., Yan T.: Probabilistic teleportation via a non-maximally entangled GHZ state. Chin. Sci. 55, 902–906 (2010)

    Google Scholar 

  26. Cao Z.L. et al.: Probabilistic teleportation of unknown atomic state using W class states. Phys. A. 337, 132–140 (2004)

    Article  Google Scholar 

  27. Nie Y.Y. et al.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284, 1457–1460 (2011)

    Article  ADS  Google Scholar 

  28. Kimble H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  29. Acín A. et al.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256–259 (2007)

    Article  Google Scholar 

  30. Le Q.C. et al.: On the Security of Quantum Networks: A Proposal Framework and its Capacity, pp. 385–396. Springer, The Netherlands (2007)

    Google Scholar 

  31. Cheng S.-T., Wang C.-Y.: Quantum switching and quantum merge sorting. IEEE Trans. Circuits Syst. 53, 316–324 (2006)

    Article  Google Scholar 

  32. Tsai L.-M., Kun S.-Y.: Digital switching in the quantum domain. IEEE Trans. Nano Technol. 1, 154–164 (2002)

    Article  ADS  Google Scholar 

  33. Jiang M. et al.: Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels. Phys. A Stat. Mech. Appl. 390, 760–768 (2011)

    Article  Google Scholar 

  34. Jiang M. et al.: Faithful teleportation via multi-particle quantum states in a network with many agents. Quantum Inf. Process. 11(1), 23–40 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Vartiainen J.J., Möttönen M., Salomaa M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92, 177902 (2004)

    Article  ADS  Google Scholar 

  36. Benjamin P. et al.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009)

    Article  Google Scholar 

  37. Dong D.-Y., Petersen I.R.: Sliding mode control of quantum systems. New J. Phys. 11, 105033 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. Monz T., Kim K., Villar A.S., Schindler P., Chwalla M., Riebe M., Roos C.F., Häffner H., Hänsel W., Hennrich M., latt R.: Realization of universal ion-trap quantum computation with decoherence-free qubits. Phys. Rev. Lett. 103, 200503 (2009)

    Article  ADS  Google Scholar 

  39. Michael A. et al.: A view of cloud. Commun. ACM 53, 50–58 (2010)

    Google Scholar 

  40. Wang L.-Z. et al.: Cloud computing: a perspective study. New Gener. Comput. 28, 137–146 (2010)

    Article  ADS  MATH  Google Scholar 

  41. Daskin A., Kais S.: Decomposition of unitary matrices for finding quantum circuits: application to molecular Hamiltonians. J. Chem. Phys. 134, 144112 (2011)

    Article  ADS  Google Scholar 

  42. Lanyon B.P. et al.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009)

    Article  Google Scholar 

  43. Chen X.-B., Wen Q.-Y.: Quantum circuits for probabilistic entanglement teleportation entanglement teleportation via a partially entangled pair. Int. J. Quantum Inf. 5, 717–728 (2007)

    Article  MATH  Google Scholar 

  44. Gu Y.-J., Li W.-D., Guo G.-C.: Protocol and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M., Wu, RB., Li, H. et al. A centralized quantum switch network based on probabilistic channels. Quantum Inf Process 12, 395–410 (2013). https://doi.org/10.1007/s11128-012-0384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0384-9

Keywords

Navigation