Toward a higher yield: a wireless sensor network-based temperature monitoring and fan-circulating system for precision cultivation in plant factories | Precision Agriculture Skip to main content

Advertisement

Log in

Toward a higher yield: a wireless sensor network-based temperature monitoring and fan-circulating system for precision cultivation in plant factories

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Currently, global warming is worsening, causing the difficulty of cultivating crops in open fields, and leading to unstable quality of crops. Plant factories provide a well-controlled growth environment for precisely cultivating plants. However, uneven temperature distributions (UTDs) still occur at each cultivation shelf in plant factories, which decreases the yields (fresh weight) of plants. In this study, a wireless sensor network (WSN)-based automatic temperature monitoring and fan-circulating system for precision cultivation in plant factories is proposed, and it is built upon the technologies of WSN, ordinary kriging spatial interpolation, and automation control, to precisely find the UTD areas of cultivation shelves. Once a UTD area occurs, the fan-circulating system can be triggered immediately to automatically trace the area and circulate the air. This action can effectively improve the air flow in the cultivation zone, providing optimal growth conditions for plants. The proposed system has been deployed in two plant factories that grew Boston lettuces, and a series of performance evaluation experiments were conducted. The experimental results indicate that the fresh weight of the harvested lettuces increases by 61–109% when employing the proposed system that efficiently and significantly decreases the variation of the temperature in the cultivation zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bayraktar, H., & Turalioglu, F. S. (2005). A Kriging-based approach for locating a sampling site—in the assessment of air quality. Stochastic Environmental Research and Risk Assessment, 19, 301–305.

    Article  Google Scholar 

  • Birrell, S. J., Sudduth, K. A., & Borgelt, S. C. (1996). Comparison of sensors and techniques for crop yield mapping. Computers and Electronics in Agriculture, 14(2–3), 215–233.

    Article  Google Scholar 

  • Both, A. J., Albright, L. D., Langhans, R. W., Reiser, R. A., & Vinzant, B. G. (1997). Hydroponic lettuce production influenced by integrated supplemental light levels in a controlled environment agriculture facility: Experimental results. Acta Horticulturae, 418, 45–52.

    Article  Google Scholar 

  • Chang, Y.C., Lee, C.Y., Zheng, X.Y., & Chuang, C.L. (2012). A data retransmitting mechanism for ecological monitoring system. In Proceedings of the 2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), pp. 1–6.

  • Chang, Y.W., Lin, T.S., Wang, J.C., Chou, J.J., Liao, K.C., & Jiang, J.A. (2011). The effect of temperature distribution on the vertical cultivation in plant factories with a WSN-based environmental monitoring system. In Proceedings of the 2011 International Conference on Agricultural and Natural Resources Engineering Advances in Biomedical Engineering (ANRE-2011), pp. 234–240.

  • Chen, C. P., Chuang, C. L., Tseng, C. L., Yang, E. C., & Jiang, J. A. (2009). A novel energy efficient adaptive routing protocol for wireless sensor networks. Journal of the Chinese Society of Mechanical Engineers, 30(1), 59–65.

    Google Scholar 

  • Chiang, S. Y., Kan, Y. C., Chen, Y. S., Tu, Y. C., & Lin, H. C. (2016). Fuzzy computing model of activity recognition on WSN movement data for ubiquitous healthcare measurement. Sensors. https://doi.org/10.3390/s16122053.

    Article  PubMed  Google Scholar 

  • Curran, P. J. (1988). The semivariogram in remote sensing: An introduction. Remote Sensing of Environment, 24(3), 493–507.

    Article  Google Scholar 

  • De Caires, S. A., Wuddivira, M. N., & Bekele, I. (2015). Spatial analysis for management zone delineation in a humid tropic cocoa plantation. Precision Agriculture, 16(2), 129–147.

    Article  Google Scholar 

  • Despommier, D. (2009). The rise of vertical farms. Scientific American, 301, 80–87.

    Article  PubMed  Google Scholar 

  • Diacono, M., Castrignanò, A., Vitti, C., Stellacci, A. M., Marino, L., Cocozza, C., et al. (2014). An approach for assessing the effects of site-specific fertilization on crop growth and yield of durum wheat in organic agriculture. Precision Agriculture, 15(5), 479–498.

    Article  Google Scholar 

  • Ge, Y., Thomasson, J. A., Sui, R., & Wooten, J. (2011). Regression-kriging for characterizing soils with remote-sensing data. Frontiers of Earth Science, 5(3), 239–244.

    Google Scholar 

  • Goodale, C. L., Aber, J. D., & Ollinger, S. V. (1998). Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Climate Research, 10(1), 35–49.

    Article  Google Scholar 

  • Guo, X. M., Yang, X. T., Chen, M. X., Li, M., & Wang, Y. A. (2015). A model with leaf area index and apple size parameters for 2.4 GHz radio propagation in apple orchards. Precision Agriculture, 16(2), 180–200.

    Article  Google Scholar 

  • Holford, T. R., Ebisu, K., McKay, L. A., Gent, J. F., Triche, E. W., Bracken, M. B., et al. (2010). Integrated exposure modeling: A model using GIS and GLM. Statistics in Medicine, 29(1), 116–129.

    PubMed  PubMed Central  Google Scholar 

  • Ikeda, A., Tanimura, Y., Ezaki, K., Kawai, Y., Nakayama, S., Iwao, K., et al. (1992). Environmental control and operation monitoring in a plant factory using artificial light. Acta Horticulturae, 304, 151–158.

    Article  Google Scholar 

  • Jao, R. C., Lai, C. C., Feng, W., & Chang, S. F. (2005). Effects of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light-emitting diodes. HortScience, 40(2), 436–438.

    Google Scholar 

  • Jensen, M. H. (1997). Food production in greenhouses. In E. Goto, K. Kurata, M. Hayashi, & S. Sase (Eds.), Plant production in closed ecosystems (pp. 1–14). Netherlands: Springer.

    Google Scholar 

  • Jiang, J. A., Chen, C. P., Chuang, C. L., Lin, T. S., Tseng, C. L., Yang, E. C., et al. (2009). CoCMA: Energy-efficient coverage control in cluster-based wireless sensor networks using a memetic algorithm. Sensors, 9(6), 4918–4940.

    Article  PubMed  Google Scholar 

  • Jiang, J. A., Lin, T. S., Chuang, C. L., Chen, C. P., Sun, C. H., Juang, Y. J., et al. (2011). A QoS-guaranteed coverage precedence routing algorithm for wireless sensor networks. Sensors, 11(4), 3418–3438.

    Article  PubMed  Google Scholar 

  • Jiang, J. A., Wang, C. H., Chen, C. H., Liao, M. S., Su, Y. L., Chen, W. S., et al. (2016a). A WSN-based automatic monitoring system for the foraging behavior of honey bees and environmental factors of beehives. Computers and Electronics in Agriculture, 123, 304–318.

    Article  Google Scholar 

  • Jiang, J. A., Wang, C. H., Liao, M. S., Zheng, X. Y., Liu, J. H., Chuang, C. L., et al. (2016b). A wireless sensor network-based monitoring system with dynamic convergecast tree algorithm for precision cultivation management in orchid greenhouses. Precision Agriculture, 17, 766–785.

    Article  Google Scholar 

  • Juo, K.T., Lin, T.S., Chang, Y.W., Wang, J.C., Chou, J.J., Liao, K.C., Shieh J.C., & Jiang, J.A. (2012). The effect of temperature variation in the plant factory using a vertical cultivation system. In Proceedings of the 6th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering, pp. 963–968.

  • Kerry, R., Goovaerts, P., Giménez, D., & Oudemans, P. V. (2017). Investigating temporal and spatial patterns of cranberry yield in New Jersey fields. Precision Agriculture, 18(4), 507–524.

    Article  Google Scholar 

  • Knotters, M., Brus, D. J., & Oude Voshaar, J. H. (1995). A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma, 67(3–4), 227–246.

    Article  Google Scholar 

  • Kozai, T. (2005). Introduction. In T. Kozai, F. Afreen, & S. M. A. Zobayed (Eds.), Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system (pp. 1–5). Berlin: Springer.

    Chapter  Google Scholar 

  • Kozai, T., Niu, G., & Takagaki, M. (2015). PFAL business and R&D in the world: Current status and perspectives. In T. Kozai, G. Niu, & M. Takagaki (Eds.), Plant factory: An indoor vertical farming system for efficient quality food production (p. 35). Salt Lake City, USA: Academic Press.

    Google Scholar 

  • Li, J., & Heap A.D. (2008). A review of spatial interpolation methods for environmental scientists. Geoscience Australia, 135–137.

  • Liao, M. S., Chen, S. F., Chou, C. Y., Chen, H. Y., Yeh, S. H., Chang, Y. C., et al. (2017). On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Computers and Electronics in Agriculture, 136, 125–139.

    Article  Google Scholar 

  • Miyagi, A., Uchimiya, H., & Kawai-Yamada, M. (2017). Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory. Food Chemistry, 218, 561–568.

    Article  PubMed  CAS  Google Scholar 

  • Papritz, A., & Stein, A. (2002). Spatial prediction by linear kriging. In A. Stein, F. Van der Meer, & B. Gorte (Eds.), Spatial statistics for remote sensing. Remote sensing and digital image processing. Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Reiser, D., Paraforos, D. S., Khan, M. T., Griepentrog, H. W., & Vázquez-Arellano, M. (2017). Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precision Agriculture, 18(3), 279–292.

    Article  Google Scholar 

  • Salleh, A., Ismail, M. K., Mohamad, N. R., Abd Aziz, M. Z. A., Othman, M. A., & Misran, M. H. (2013). Development of greenhouse monitoring using wireless sensor network through ZigBee technology. International Journal of Engineering Science Invention, 2(7), 6–12.

    Google Scholar 

  • Sensirion AG, Switzerland. Retrieved January 12, 2017, from https://cdn-shop.adafruit.com/datasheets/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf.

  • Sheu, J.P., Chang, C.J., Sun, C.Y., & Hu, W.K. (2008). WSNTB: A testbed for heterogeneous wireless sensor networks. In Proceedings of the 2008 First IEEE International Conference on Ubi-Media Computing, pp. 338–343.

  • Straw, C.M., & Henry, G.M. (2017). Spatiotemporal variation of site-specific management units on natural turfgrass sports fields during dry down. Precision Agriculture. https://doi.org/10.1007/s11119-017-9526-5.

  • Thompson, H. C., Langhans, R. W., Both, A. J., & Albright, L. D. (1998). Shoot and root temperature effects on growth of lettuce in a floating hydroponic system. Journal of the American Society for Horticultural Science, 123(3), 361–364.

    Google Scholar 

  • Uyan, M. (2016). Determination of agricultural soil index using geostatistical analysis and GIS on land consolidation projects: A case study in Konya/Turkey. Computers and Electronics in Agriculture, 123, 402–409.

    Article  Google Scholar 

  • Voltz, M., & Webster, R. (1990). A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. European Journal of Soil Science, 41(3), 473–490.

    Article  Google Scholar 

  • Wallance, M. K., & Hawkins, D. M. (1994). Applications of geostatistics in plant nematology. Journal of Nematology, 26(4S), 626–634.

    Google Scholar 

  • Wu, Y. H., Hung, M. C., & Patton, J. (2013). Assessment and visualization of spatial interpolation of soil pH values in farmland. Precision Agriculture, 14(6), 565–585.

    Article  Google Scholar 

  • Yate Loon Electronics Co., Ltd., Taiwan. Retrieved January 12, 2017, from http://www.yateloon.com/s/2/product-38836/DC-FAN-SERIES-92x92x25.html?TTo=en.

  • Zhang, S. W., Shen, C. Y., Chen, X. Y., Ye, H. C., Huang, Y. F., & Lai, S. (2013). Spatial interpolation of soil texture using compositional kriging and regression kriging with consideration of the characteristics of compositional data and environment variables. Journal of Integrative Agriculture, 12(9), 1673–1683.

    Article  Google Scholar 

  • Zimmerman, D. A., De Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., et al. (1998). A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, 34, 1373–1413.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Ministry of Science and Technology of the Executive Yuan, the Council of Agriculture of the Executive Yuan of Taiwan, and National Taiwan University under contracts MOST 103-2627-M-002-007, MOST 105-2627-M-002-013, 104AS-16.4.1-ST-a6, 106AS-12.4.1-ST-a1, and 106R891004. The authors would also like to thank Mr. Rong-Yuan Liang from the Agricultural Engineering Research Center, Taiwan, for providing the experiment space and plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Kang Huang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Informed consent

The authors have read and understand the informed consent provided by the Journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, JA., Liao, MS., Lin, TS. et al. Toward a higher yield: a wireless sensor network-based temperature monitoring and fan-circulating system for precision cultivation in plant factories. Precision Agric 19, 929–956 (2018). https://doi.org/10.1007/s11119-018-9565-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9565-6

Keywords

Navigation