Leaf area index estimation in vineyards using a ground-based LiDAR scanner | Precision Agriculture
Skip to main content

Leaf area index estimation in vineyards using a ground-based LiDAR scanner

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Estimation of grapevine vigour using mobile proximal sensors can provide an indirect method for determining grape yield and quality. Of the various indexes related to the characteristics of grapevine foliage, the leaf area index (LAI) is probably the most widely used in viticulture. To assess the feasibility of using light detection and ranging (LiDAR) sensors for predicting the LAI, several field trials were performed using a tractor-mounted LiDAR system. This system measured the crop in a transverse direction along the rows of vines and geometric and structural parameters were computed. The parameters evaluated were the height of the vines (H), the cross-sectional area (A), the canopy volume (V) and the tree area index (TAI). This last parameter was formulated as the ratio of the crop estimated area per unit ground area, using a local Poisson distribution to approximate the laser beam transmission probability within vines. In order to compare the calculated indexes with the actual values of LAI, the scanned vines were defoliated to obtain LAI values for different row sections. Linear regression analysis showed a good correlation (R 2 = 0.81) between canopy volume and the measured values of LAI for 1 m long sections. Nevertheless, the best estimation of the LAI was given by the TAI (R 2 = 0.92) for the same length, confirming LiDAR sensors as an interesting option for foliage characterization of grapevines. However, current limitations exist related to the complexity of data process and to the need to accumulate a sufficient number of scans to adequately estimate the LAI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnó, J., Vallès, J. M., Llorens, J., Blanco, R., Palacín, J., & Sanz, R., et al. (2006). Ground laser scanner data analysis for leaf area index (LAI) prediction in orchards and vineyards. In Book of Abstracts of the AgEng 2006 Conference (pp. 311–312). Bonn, Germany: VDI Verlag GmbH.

  • Drissi, R., Goutouly, J. P., Forget, D., & Gaudillere, J. P. (2009). Nondestructive measurement of grapevine leaf area by ground normalized difference vegetation index. Agronomy Journal, 101(1), 226–231.

    Article  Google Scholar 

  • Ehlert, D., Heisig, M., & Adamek, R. (2010). Suitability of a laser rangefinder to characterize winter wheat. Precision Agriculture, 11(6), 650–663.

    Article  Google Scholar 

  • Ehlert, D., Horn, H. J., & Adamek, R. (2008). Measuring crop biomass density by laser triangulation. Computers and Electronics in Agriculture, 61(2), 117–125.

    Article  Google Scholar 

  • Escolà, A., Planas, S., Rosell, J. R., Pomar, J., Camp, F., Solanelles, F., et al. (2011). Performance of an ultrasonic ranging sensor in apple tree canopies. Sensors, 11(3), 2459–2477.

    Article  PubMed  Google Scholar 

  • Gebbers, R., Ehlert, D., & Adamek, R. (2011). Rapid mapping of the leaf area index in agricultural crops. Agronomy Journal, 103(5), 1532–1541.

    Article  Google Scholar 

  • Gil, E., Escolà, A., Rosell, J. R., Planas, S., & Val, L. (2007). Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection, 26(8), 1287–1297.

    Article  Google Scholar 

  • Giles, D. K., Delwiche, M. J., & Dodd, R. B. (1988). Electronic measurement of tree canopy volume. Transactions of the ASAE, 31(1), 264–272.

    Google Scholar 

  • Goutouly, J. P., Drissi, R., Forget, D., & Gaudillère, J. P. (2006). Characterization of vine vigour by ground based NDVI measurements. In Proceedings of the VI International Terroir Congress (pp. 237–241). Bordeaux, France.

  • Grantz, D. A., & Williams, L. E. (1993). An empirical protocol for indirect measurement of leaf area index in grape (Vitis vinifera L.). HortScience, 28(8), 777–779.

    Google Scholar 

  • Hall, A., Lamb, D. W., Holzapfel, B., & Louis, J. (2002). Optical remote sensing applications in viticulture—a review. Australian Journal of Grape and Wine Research, 8, 36–47.

    Article  Google Scholar 

  • Hidalgo, J. (2006). La calidad del vino desde el viñedo (The quality of wine from the vineyard). Madrid: Mundi-Prensa.

    Google Scholar 

  • Johnson, L. F., Bosch, D. F., Williams, D. C., & Lobitz, B. M. (2001). Remote sensing of vineyard management zones: Implications for wine quality. Applied Engineering in Agriculture, 17(4), 557–560.

    Google Scholar 

  • Johnson, L. F., & Pierce, L. L. (2004). Indirect measurements of leaf area index in California north coast vineyards. HortScience, 39(2), 236–238.

    Google Scholar 

  • Johnson, L. F., Roczen, D. E., Youkhana, S. K., Nemani, R. R., & Bosch, D. F. (2003). Mapping vineyard leaf area with multispectral satellite imagery. Computers and Electronics in Agriculture, 38(1), 33–44.

    Article  Google Scholar 

  • Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., et al. (2004). Review of methods for in situ leaf area index determination: Part I. Theories, sensors, and hemispherical photography. Agricultural and Forest Meteorology, 121(1–2), 19–35.

    Article  Google Scholar 

  • Keightley, K. E., & Bawden, G. W. (2010). 3D volumetric modelling of grapevine biomass using Tripod LiDAR. Computers and Electronics in Agriculture, 74(2), 305–312.

    Article  Google Scholar 

  • Lee, K. H., & Ehsani, R. (2008). Comparison of two 2D laser scanners for sensing object distances, shapes, and surface patterns. Computers and Electronics in Agriculture, 60(2), 250–262.

    Article  Google Scholar 

  • Lee, K. H., & Ehsani, R. (2009). A laser scanner based measurement system for quantification of citrus tree geometric characteristics. Applied Engineering in Agriculture, 25(5), 777–788.

    Google Scholar 

  • Llorens, J., Gil, E., Llop, J., & Escolà, A. (2011). Ultrasonic and LiDAR sensors for electronic canopy characterization in vineyards: Advances to improve pesticide application methods. Sensors, 11(2), 2177–2194.

    Article  PubMed  Google Scholar 

  • López-Lozano, R., Baret, F., García de Cortázar-Atauri, I., Bertrand, N., & Casterad, M. A. (2009). Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards. Agricultural and Forest Meteorology, 149(8), 1307–1316.

    Article  Google Scholar 

  • Mazzetto, F., Calcante, A., Mena, A., & Vercesi, A. (2010). Integration of optical and analogue sensors for monitoring canopy health and vigour in precision agriculture. Precision Agriculture, 11(6), 636–649.

    Article  Google Scholar 

  • Moorthy, I., Miller, J. R., Jimenez Berni, J. A., Zarco-Tejada, P., Hu, B., & Chen, J. (2011). Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology, 151(2), 204–214.

  • Palacín, J., Pallejà, T., Tresánchez, M., Sanz, R., Llorens, J., Ribes-Dasi, M., et al. (2007). Real-time tree-foliage surface estimation using a ground laser scanner. IEEE Transactions on Instrumentation and Measurement, 56(4), 1377–1383.

    Article  Google Scholar 

  • Palleja, T., Tresanchez, M., Teixido, M., Sanz, R., Rosell, J. R., & Palacin, J. (2010). Sensitivity of tree volume measurement to trajectory errors from a terrestrial LiDAR scanner. Agricultural and Forest Meteorology, 150(11), 1420–1427.

    Article  Google Scholar 

  • Rosell, J. R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., et al. (2009a). Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LiDAR scanning. Agricultural and Forest Meteorology, 149(9), 1505–1515.

    Article  Google Scholar 

  • Rosell, J. R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., et al. (2009b). A tractor-mounted scanning LiDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering, 102(2), 128–134.

    Article  Google Scholar 

  • Saeys, W., Lenaerts, B., Craessaerts, G., & De Baerdemaeker, J. (2009). Estimation of the crop density of small grains using LiDAR sensors. Biosystems Engineering, 102(1), 22–30.

    Article  Google Scholar 

  • Sanchez-de-Miguel, P., Junquera, P., de la Fuente, M., Jimenez, L., Linares, R., Baeza, P., et al. (2011). Estimation of vineyard leaf area by linear regression. Spanish Journal of Agricultural Research, 9(1), 202–212.

    Google Scholar 

  • Sanz, R., Llorens, J., Escolà, A., Arnó, J., Ribes-Dasi, M., Masip, J., et al. (2011). Innovative LiDAR 3D dynamic measurement system to estimate fruit-tree leaf area. Sensors, 11(6), 5769–5791.

    Article  Google Scholar 

  • Schumann, A. W., & Zaman, Q. U. (2005). Software development for real-time ultrasonic mapping of tree canopy size. Computers and Electronics in Agriculture, 47(1), 25–40.

    Article  Google Scholar 

  • Scotford, I. M., & Miller, P. C. H. (2004). Estimating tiller density and leaf area index of winter wheat using spectral reflectance and ultrasonic sensing techniques. Biosystems Engineering, 89(4), 395–408.

    Article  Google Scholar 

  • Smart, R. E. (1985). Principles of grapevine canopy microclimate manipulation with implications for yield and quality: A review. American Journal of Enology and Viticulture, 36(3), 230–239.

    Google Scholar 

  • Solanelles, F., Escolà, A., Planas, S., Rosell, J. R., Camp, F., & Gràcia, F. (2006). An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosystems Engineering, 95(4), 473–481.

    Article  Google Scholar 

  • Stamatiadis, S., Taskos, D., Tsadila, E., Christofides, C., Tsadilas, C., & Schepers, J. S. (2010). Comparison of passive and active canopy sensors for the estimation of vine biomass production. Precision Agriculture, 11(3), 306–315.

    Article  Google Scholar 

  • Tisseyre, B., Mazzoni, C., Ardoin, N., & Clipet, C. (2001). Yield and harvest quality measurement in precision viticulture—application for a selective vintage. In G. Grenier & S. Blackmore (Eds.), Proceedings of the 3rd European conference on precision agriculture (pp. 133–138). Montpellier: Agro.

    Google Scholar 

  • Tregoat, O., Ollat, N., Grenier, G., & Van Leeuwen, C. (2001). Etude comparative de la précision et de la rapidité de mise en œuvre de différentes méthodes d’estimation de la surface foliaire de la vigne. Journal International des Sciences de la Vigne et du Vin, 35(1), 31–39. (in French).

    Google Scholar 

  • Tumbo, S. D., Salyani, M., Whitney, J. D., Wheaton, T. A., & Miller, W. M. (2002). Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume. Applied Engineering in Agriculture, 18(3), 367–372.

    Google Scholar 

  • Walklate, P. J. (1989). A laser scanning instrument for measuring crop geometry. Agricultural and Forest Meteorology, 46(4), 275–284.

    Article  Google Scholar 

  • Walklate, P. J., Cross, J. V., Richardson, G. M., Murray, R. A., & Baker, D. E. (2002). Comparison of different spray volume deposition models using LiDAR measurements of apple orchards. Biosystems Engineering, 82(3), 253–267.

    Article  Google Scholar 

  • Wei, J., & Salyani, M. (2004). Development of a laser scanner for measuring tree canopy characteristics: Phase 1. Prototype development. Transactions of the ASABE, 47(6), 2101–2107.

    Google Scholar 

  • Wei, J., & Salyani, M. (2005). Development of a laser scanner for measuring tree canopy characteristics: Phase 2. Foliage density measurement. Transactions of the ASABE, 48(4), 1595–1601.

    Google Scholar 

  • Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., & Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) determination. Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1–2), 37–53.

    Article  Google Scholar 

  • Zaman, Q. U., & Schumann, A. W. (2005). Performance of an ultrasonic tree volume measurement system in commercial citrus groves. Precision Agriculture, 6(5), 467–480.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by ERDF (European Regional Development Fund) and the Spanish Ministry of Science and Education (Agreement No. AGL2002-04260-C04-02, and acronym PULVEXACT, and Agreement No. AGL2007-66093-C04-03, and acronym OPTIDOSA). Likewise, the authors wish to thank the Agricultural Division of Codorníu for providing the vineyard field where trials were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Arnó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnó, J., Escolà, A., Vallès, J.M. et al. Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precision Agric 14, 290–306 (2013). https://doi.org/10.1007/s11119-012-9295-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-012-9295-0

Keywords