Abstract
Local departments of transportation and metropolitan planning organizations have been collecting traffic data for many decades. However, these data are rarely exploited to their full potential. In this paper, we describe an exploratory visualization toolkit for large traffic flow databases. The visualization toolkit is based on the concept of the traffic cube: an extension of the data cube in data mining. The traffic cube organizes traffic flow data across different spatial and temporal dimensions and with respect to user-specified aggregation levels. The toolkit allows the user to perform data cube operations to select, summarize and cross-tabulate the traffic data prior to visualization as two-dimensional space-time plots. We demonstrate a prototype system using MATLAB, ArcGIS and MS Access database software. Example visualizations of a large database of hourly traffic flows along major highways in the state of Utah (USA) over a 10-year period illustrate the potential for the toolkit to reveal patterns about traffic flows and trends hidden in the database.
Similar content being viewed by others
References
Adriaans, P., Zantinge, D.: Data Mining. Addison-Wesley, Harlow, UK (1996)
Cho, H.-J., Jou, Y.-J., Lan, C.-L.: Time dependent origin-destination estimation from traffic count without prior information. Networks Spatial Econ. 9, 145–170 (2009)
Daganzo, C.F.: Fundamentals of Transportation and Traffic Operations. Elsevier Science, Oxford (1997)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–30. AAAI Press, Menlo Park, CA (1996)
Fayyad, U., Grinstein, G., Wierse, A.: Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Matel, CA (2001)
FHWA: Traffic detector handbook: third edition, federal highway administration. U.S. Department of Transportation, Publication Number: FHWA-HRT-06-139, October 2006. http://www.fhwa.dot.gov/publications/research/operations/its/06108/06108.pdf (2006). Accessed 18 April 2011
Gahegan, M.: The case for inductive and visual techniques in the analysis of spatial data. J. Geogr. Syst. 2, 77–83 (2000)
Gahegan, M.: Visual exploration and explanation in geography: analysis with light. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edn, pp. 291–324. Taylor and Francis, London (2009)
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Min. Knowl. Disc. 1, 29–53 (1997)
Guo, D.: Multivariate spatial clustering and visualization. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edition edn, pp. 325–345. Taylor and Francis, London (2009)
Han, J.W., Kamber, J.: Data mining: concept and techniques, 2nd edn, pp. xxi, 1–40, 105–157, and 600–614. Elsevier Inc. (2006)
Harinarayan, V., Rajaramna, A., Ullman, J.D.: Implementing data cubes efficiently. SIGMOD Record 25, 205–216 (1996)
Keim, D.A., Kriegel, H.-P.: Using visualization to support data mining of large existing databases. In: Lee, J.P., Grinstein, G.G. (eds.) Database Issues for Data Visualization, Lecture Notes in Computer Science, vol. 871, pp. 210–229 (1994).
Lu, C.-T., Boedihardjo, A.P., Shekhar, S.: Analysis of spatial data with map cubes: highway traffic data. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edition edn, pp. 69–97. Taylor and Francis, London (2009)
McCormick, S., Thomas, J.: The Fast Adaptive Composite Grid (FAC) method for elliptic equations. Math. Comput. 46–174, 439–456 (1986)
Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)
Miller, H.J., Han, J.: Geographic data mining and knowledge discovery: an overview. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edition edn, pp. 1–26. Taylor & Francis, London (2009)
Mohania, M., et al.: Advances and research directions in data-warehousing technology. Aust. J. Inform. Syst. 7–1, 41–59 (1999)
Nagel, K., Wolf, D.E., Wagner, P., Simon, P.: Two-lane traffic rules for cellular automata: a systematic approach. Phys. Rev. E 58, 1425–1437 (1998)
Nagel, K., Wagner, P., Woesler, R.: Still flowing: old and new approaches for traffic flow modeling. Oper. Res. 51, 681–710 (2003)
Nicolai, T., Carr, D., Weiland, S.K., Duhme, H., von Ehrenstein, O., Wagner, C., von Mutius, E.: Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children. Eur. Respir. J. 21, 956–963 (2003)
OLAP Council: OLAP and OLAP server definitions (1995)
Prasher, S., Zhou, X.: Multiresolution amalgamation: dynamic spatial data cube generation. In: Proceedings of 15th Australasian Database Conference (ADC 2004), Dunedin, New Zealand, pp. 103–111 (2004)
Rao, F., Zhang, L., Yu, X.L., Li, Y., Chen, Y.: Spatial hierarchy and OLAP-favored search in spatial data warehouse. In: Proceedings of the 6th ACM international workshop on data warehousing and OLAP, pp. 48–55 (2003)
Shekhar, S., Lu, C.T., Liu, R., Zhou, C.: CubeView: a system for traffic data visualization. intelligent transportation systems. In: Proceedings of the Fifth IEEE International Conference on Intelligent Transportation Systems, pp. 674–679 (2002)
Shekhar, S., Lu, C.T., Tan, X., Chawla, S., Vatsavai, R.R.: Map cube: a visualization tool for spatial data warehouses. In: Miller, H., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, pp. 74–109. Taylor & Francis (2001)
Skupin, A., Fabrikant, S.: Spatialization. In: Wilson, J., Fotheringham, S. (eds.) The Handbook of Geographical Information Science, pp. 61–79. Blackwell Publishing, London (2008)
Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for efficient implementation of spatial data cube. IEEE Trans. Knowl. Data Eng. 12–6, 938–958 (2000)
Transportation Research Board (2009) Special Report 260: Strategic Highway Research: Saving Lives, Reducing Congestion, Improving Quality of Life
Treiber, M., Helbing, D.: Reconstructing the spatio-temporal traffic dynamics from stationary detector data. Cooperative Transportation Dynamics, 1, 3.1–3.24 (online journal; www.TrafficForum.org) (2002)
Zhuang, J., Ogata, Y., Vere-Jones, D.: Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc. 97, 369–380 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Song, Y., Miller, H.J. Exploring traffic flow databases using space-time plots and data cubes. Transportation 39, 215–234 (2012). https://doi.org/10.1007/s11116-011-9343-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11116-011-9343-z