Hypomorphic Sperner Systems and Non-Reconstructible Functions | Order Skip to main content
Log in

Hypomorphic Sperner Systems and Non-Reconstructible Functions

  • Published:
Order Aims and scope Submit manuscript

Abstract

A reconstruction problem is formulated for Sperner systems, and infinite families of non-reconstructible Sperner systems are presented. This has an application to a reconstruction problem for functions of several arguments and identification minors. Sperner systems being representations of certain monotone functions, infinite families of non-reconstructible functions are thus obtained. The clones of Boolean functions are completely classified in regard to reconstructibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berge, C., Rado, R.: Note on isomorphic hypergraphs and some extensions of Whitney’s theorem to families of sets. J. Comb. Theory Ser. B 13, 226–241 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Couceiro, M., Lehtonen, E.: The arity gap of polynomial functions over bounded distributive lattices. In: 40th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2010), pp. 113–116. IEEE Computer Society, Los Alamitos (2010)

    Book  Google Scholar 

  3. Couceiro, M., Lehtonen, E., Waldhauser, T.: The arity gap of order-preserving functions and extensions of pseudo-Boolean functions. Discrete Appl. Math. 160, 383–390 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Couceiro, M., Marichal, J.-L.: Polynomial functions over bounded distributive lattices. J. Mult.-Valued Logic Soft Comput. 18, 247–256 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Denecke, K., Wismath, S.L.: Universal Algebra and Applications in Theoretical Computer Science. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  6. Ellingham, M.N.: Recent progress in edge-reconstruction. Seventeenth Manitoba Conference on Numerical Mathematics and Computing. Congr. Numer. 62, 3–20 (1988)

    MathSciNet  Google Scholar 

  7. Foldes, S., Pogosyan, G.R.: Post classes characterized by functional terms. Discrete Appl. Math. 142, 35–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jablonski, S.W., Gawrilow, G.P., Kudrjawzew, W.B.: Boolesche Funktionen und Postsche Klassen. Vieweg, Braunschweig (1970)

    MATH  Google Scholar 

  9. Goodstein, R.L.: The solution of equations in a lattice. Proc. R. Soc. Edinb. Sect. A 67, 231–242 (1965/1967)

    MATH  MathSciNet  Google Scholar 

  10. Harary, F.: On the reconstruction of a graph from a collection of subgraphs. In: Theory of Graphs and Its Applications (Proc. Sympos. Smolenice, 1963), pp. 47–52,. Publ. House Czechoslovak Acad. Sci., Prague (1964)

  11. Kelly, P.J.: On Isometric Transformations. Ph.D. thesis, University of Wisconsin (1942)

  12. Kocay, W.L.: A family of nonreconstructible hypergraphs. J. Combin. Theory Ser. B 42, 46–63 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kocay, W.L., Lui, Z.M.: More non-reconstructible hypergraphs. Discrete Math. 72, 213–224 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lehtonen, E.: Totally symmetric functions are reconstructible from identification minors. Electron. J. Combin. 21(2), P2.6 (2014)

  15. Lehtonen, E.: Reconstructing multisets over commutative groupoids and affine functions over nonassociative semirings. Internat. J. Algebra Comput. 24, 11–31 (2014)

  16. Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic. Annals of Mathematical Studies, vol. 5. Princeton University Press, Princeton (1941)

    Google Scholar 

  17. Stockmeyer, P.K.: A census of nonreconstructible digraphs. I. Six related families. J. Combin. Theory Ser. B 31, 232–239 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)

    MATH  Google Scholar 

  19. Willard, R.: Essential arities of term operations in finite algebras. Discrete Math. 149, 239–259 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkko Lehtonen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couceiro, M., Lehtonen, E. & Schölzel, K. Hypomorphic Sperner Systems and Non-Reconstructible Functions. Order 32, 255–292 (2015). https://doi.org/10.1007/s11083-014-9330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-014-9330-z

Keywords

Navigation