Associative Polynomial Functions over Bounded Distributive Lattices | Order Skip to main content
Log in

Associative Polynomial Functions over Bounded Distributive Lattices

  • Published:
Order Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The associativity property, usually defined for binary functions, can be generalized to functions of a given fixed arity n ⩾ 1 as well as to functions of multiple arities. In this paper, we investigate these two generalizations in the case of polynomial functions over bounded distributive lattices and present explicit descriptions of the corresponding associative functions. We also show that, in this case, both generalizations of associativity are essentially the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuziness and Soft Computing. Springer, Berlin (2007)

    Google Scholar 

  2. Couceiro, M.: On the lattice of equational classes of Boolean functions and its closed intervals. J. Mult.-Valued Log. Soft Comput. 14(1–2), 81–104 (2008)

    MathSciNet  Google Scholar 

  3. Couceiro, M., Marichal, J.-L.: Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices. Fuzzy Sets Syst. 161(5), 694–707 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Couceiro, M., Marichal, J.-L.: Representations and characterizations of polynomial functions on chains. J. Mult.-Valued Log. Soft Comput. 16(1–2), 65–86 (2010)

    MathSciNet  Google Scholar 

  5. Couceiro, M., Marichal, J.-L.: Polynomial functions over bounded distributive lattices. J. Mult.-Valued Log. Soft Comput. (2010, in press)

  6. Dörnte, W.: Untersuchengen über einen verallgemeinerten Gruppenbegriff. Math. Z. 29, 1–19 (1928)

    Article  MATH  Google Scholar 

  7. Dudek, W.A.: Varieties of polyadic groups. Filomat 9, 657–674 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Dudek, W.A.: On some old and new problems in n-ary groups. Quasigroups Relat. Syst. 8, 15–36 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Dudek, W.A., Glazek, K., Gleichgewicht, B.: A note on the axiom of n-groups. Colloq. Math. Soc. J. Bolyai [“Universal Algebra”, Esztergom (Hungary)] 29, 195–202 (1977)

    MathSciNet  Google Scholar 

  10. Fodor, J.C.: An extension of Fung–Fu’s theorem. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 4(3), 235–243 (1996)

    Article  MathSciNet  Google Scholar 

  11. Glazek, K.: Bibliography of n-groups (polyadic groups) and some group-like n-ary systems, In: Proceedings of the Symposium on n-ary Structures, pp. 253–289. Macedonian Academy of Sciences and Arts, Skopje (1982)

    Google Scholar 

  12. Glazek, K., Gleichgewicht, B.: Remarks on n-groups as abstract algebras. Colloq. Math. 17, 209–219 (1967)

    MathSciNet  MATH  Google Scholar 

  13. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  14. Hosszú, M.: On the explicit form of n-group operations. Publ. Math. Debrecen 10, 88–92 (1963)

    MathSciNet  Google Scholar 

  15. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. In: Trends in Logic—Studia Logica Library, vol. 8. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  16. Marichal, J.-L.: Aggregation operators for multicriteria decision aid. PhD thesis, Institute of Mathematics, University of Liège, Liège, Belgium (1998)

  17. Marichal, J.-L.: Weighted lattice polynomials. Discrete Math. 309(4), 814–820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Monk, J.D., Sioson, F.M.: On the general theory of m-groups. Fundam. Math. 72, 233–244 (1971)

    MathSciNet  MATH  Google Scholar 

  19. Post, E.L.: Polyadic groups, Trans. Am. Math. Soc. 48, 208–350 (1940)

    MathSciNet  MATH  Google Scholar 

  20. Zupnik, D.: Polyadic semigroups. Publ. Math. Debrecen 14, 273–279 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Marichal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couceiro, M., Marichal, JL. Associative Polynomial Functions over Bounded Distributive Lattices. Order 28, 1–8 (2011). https://doi.org/10.1007/s11083-010-9150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9150-8

Keywords

Mathematics Subject Classifications (2000)

Navigation