The Geometry of Relations | Order
Skip to main content

The Geometry of Relations

  • Published:
Order Aims and scope Submit manuscript

Abstract

The classical way to study a finite poset (X, ≤ ) using topology is by means of the simplicial complex Δ X of its nonempty chains. There is also an alternative approach, regarding X as a finite topological space. In this article we introduce new constructions for studying X topologically: inspired by a classical paper of Dowker (Ann Math 56:84–95, 1952), we define the simplicial complexes K X and L X associated to the relation ≤. In many cases these polyhedra have the same homotopy type as the order complex Δ X . We give a complete characterization of the simplicial complexes that are the K or L-complexes of some finite poset and prove that K X and L X are topologically equivalent to the smaller complexes K X , L X induced by the relation <. More precisely, we prove that K X (resp. L X ) simplicially collapses to K X (resp. L X ). The paper concludes with a result that relates the K-complexes of two posets X, Y with closed relations R ⊂ X × Y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandroff, P.S.: Diskrete Räume. MathematiceskiiSbornik (N.S.) 2, 501–518 (1937)

    MATH  Google Scholar 

  2. Bak, A., Brown, R., Minian, E.G., Porter, T.: Global actions, groupoid atlases and applications. J. Homotopy Relat. Struct. 1, 101–167 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Barmak, J.A., Minian, E.G.: 2-Dimension from the topological viewpoint. Order 24, 49–58 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barmak, J.A., Minian, E.G.: Minimal finite models. J. Homotopy Relat. Struct. 2, 127–140 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Barmak, J.A., Minian, E.G.: Simple homotopy types and finite spaces. Adv. Math. 218, 87–104 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics. Elsevier, New York (1995)

    Google Scholar 

  7. Cohen, M.M.: A Course in Simple Homotopy Theory. Springer-Verlag, New York (1970)

    Google Scholar 

  8. del Hoyo, M., Minian, E.G.: Classical invariants for global actions and groupoid atlases. Appl. Categ. Struct. 16(6), 689–721 (2008)

    Article  MATH  Google Scholar 

  9. Dowker, C.H.: Homology groups of relations. Ann. Math. 56, 84–95 (1952)

    Article  MathSciNet  Google Scholar 

  10. Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics, vol. 21. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. May, J.P.: Finite topological spaces. Notes for REU (2003). Available at http://www.math.uchicago.edu/may/MISCMaster.html

  12. McCord, M.C.: Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. 33, 465–474(1966)

    Article  MATH  MathSciNet  Google Scholar 

  13. McCord, M.C.: Homotopy type comparison of a space with complexes associated with its open covers. Proc. Am. Math. Soc. 18(4), 705–708 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  14. Milnor, J.: Whitehead Torsion. Bull. Amer. Math. Soc. 72, 358–426 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  15. Quillen, D.: Higher algebraic K-theory I. Lect. Notes Math. 341, 85–147 (1973)

    Article  MathSciNet  Google Scholar 

  16. Quillen, D.: Homotopy properties of the poset of non-trivial p-subgroups of a group. Adv. Math. 28, 101–128 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Segal, G.: Classifying spaces and spectral sequences. Inst. Hautes Etudes Sci. Publ. Math. 34, 105–112 (1968)

    Article  MATH  Google Scholar 

  18. Siebenmann, L.C.: Infinite simple homotopy types. Indag. Math. 32, 479–495 (1970)

    MathSciNet  Google Scholar 

  19. Spanier, E.: Algebraic Topology. McGraw Hill, New York (1966)

    MATH  Google Scholar 

  20. Stanley, R.: Enumerative Combinatorics, vol. 1. Cambrdige Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  21. Stong, R.E.: Finite topological spaces. Trans. Am. Math. Soc. 123, 325–340 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  22. Whitehead, J.H.C.: Simplicial spaces, nuclei and m-groups. Proc. Lond. Math. Soc. 45, 243–327 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  23. Whitehead, J.H.C.: On incidence matrices, nuclei and homotopy types. Ann. Math. 42, 1197–1239 (1941)

    Article  MathSciNet  Google Scholar 

  24. Whitehead, J.H.C.: Simple homotopy types. Am. J. Math. 72, 1–57 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zeeman, E.C.: On the dunce hat. Topology 2, 341–358 (1964)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Gabriel Minian.

Additional information

E.G. Minian’s research is partially supported by Conicet and by grant ANPCyT PICT 17-38280.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minian, E.G. The Geometry of Relations. Order 27, 213–224 (2010). https://doi.org/10.1007/s11083-010-9146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9146-4

Keywords

Mathematics Subject Classifications (2000)