Abstract
In this paper, some classical results of uniquely complemented lattices are extended to uniquely complemented posets (with 0 and 1) like Peirce's Theorem, the Birkhoff–von Neumann Theorem, the Birkhoff–Ward Theorem. Further, it is shown that a section semi-complemented pseudocomplemented poset is a Boolean poset.
Similar content being viewed by others
References
Adams M. E., Sichler J.: Lattices with unique complementation, Pac. J. Math. 92 (1981), 1–13
Chajda I.: Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25–34
Chajda I., Halaš R.: Characterizing triplets for modular pseudocomplemented ordered sets, Math. Slovaca 50(No. 5) (2000), 513–524
Chen C. C.: On uniquely complemented lattices, J. Nanyang Univ. 3 (1969), 380–384
Chen C. C., Grätzer G.: On the construction of complemented lattices, J. Algebra 11 (1969), 56–63
Dilworth R. P.: Lattices with unique complements, Trans. Am. Math. Soc. 57 (1945), 123–154
Frink O.: Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505–514.
Grätzer G.: General Lattice Theory, Birkhäuser, New York, 1998.
Grillet P. A., Varlet J. C.: Complementedness conditions in lattices, Bull. Soc. r. Sci. Liège 36 (1967), 628–642.
Halaš R.: Pseudocomplemented ordered sets, Arch. Math. (Brno) 29 (1993), 153–160.
Halaš R.: Some properties of Boolean ordered sets, Czech. Math. J. (Praha), 46(121) (1996), 93–98.
Janowitz M. F.: Section semicomplemented lattices, Math. Z. 63 (1968), 63–76.
Jayaram C.: Complemented semilattices, Math. Sem. Notes 8 (1980), 259–267.
V. V. Joshi and Waphare B. N.: Characterizations of 0-distributive posets, Math. Bohem. 130(1) (2005), 73–80.
Larmerová J. and Rachunek J.: Translations of distributive and modular ordered sets, Acta. Univ. Palacki. Olomonc., 91 (1988), 13–23
McLaughlin, J. E.: Atomic lattices with unique comparable complements, Proc. Am. Math. Soc. 7 (1956), 864–866.
Niederle J.: Boolean and distributive ordered sets: Characterization and representation by sets, Order 12 (1995), 189–210.
Pawar M. M. and Waphare B. N.: On Stone posets and strongly pseudocomplemented posets, J. Indian Math. Soc. (N.S.) 68(1–4) (2001), 91–95.
Saarimäki M.: Disjointness of lattice elements, Math. Nachr. 159 (1992), 169–174
Salii V.N.: Lattices with unique complements, Transl. Math. Monogr., Amer. Math. Soc. Providence, RI 69 (1988).
Thakare N. K., Maeda S. and Waphare B.N.: Modular pairs and covering property in posets, J. Indian Math. Soc. (N.S.) (in press).
Thakare N.K., Pawar M.M. and Waphare B.N.: Modular pairs, standard elements, neutral elements and related results in posets, J. Indian Math. Soc. (N.S.)(to appear).
Varlet, J.: Contributions à l'étude des treillis pseudo-complémentés et des treillis de Stone, Mém. Soc. R. Sci. Liege, Collect 8 (1963), 1–71.
Venkatanarasimhan P.V.: Pseudo-complements in posets, Proc. Am. Math. Soc. 28(No.1) (1971), 9–17.
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classification (2001)
06A06, 06A11, 06C15, 06C20, 06D15
Rights and permissions
About this article
Cite this article
Waphare, B.N., Joshi, V.V. On Uniquely Complemented Posets. Order 22, 11–20 (2005). https://doi.org/10.1007/s11083-005-9002-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-005-9002-0