On Uniquely Complemented Posets | Order
Skip to main content

On Uniquely Complemented Posets

  • Published:
Order Aims and scope Submit manuscript

Abstract

In this paper, some classical results of uniquely complemented lattices are extended to uniquely complemented posets (with 0 and 1) like Peirce's Theorem, the Birkhoff–von Neumann Theorem, the Birkhoff–Ward Theorem. Further, it is shown that a section semi-complemented pseudocomplemented poset is a Boolean poset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams M. E., Sichler J.: Lattices with unique complementation, Pac. J. Math. 92 (1981), 1–13

    MATH  MathSciNet  Google Scholar 

  2. Chajda I.: Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25–34

    MATH  MathSciNet  Google Scholar 

  3. Chajda I., Halaš R.: Characterizing triplets for modular pseudocomplemented ordered sets, Math. Slovaca 50(No. 5) (2000), 513–524

    MATH  MathSciNet  Google Scholar 

  4. Chen C. C.: On uniquely complemented lattices, J. Nanyang Univ. 3 (1969), 380–384

    MathSciNet  Google Scholar 

  5. Chen C. C., Grätzer G.: On the construction of complemented lattices, J. Algebra 11 (1969), 56–63

    Article  MATH  MathSciNet  Google Scholar 

  6. Dilworth R. P.: Lattices with unique complements, Trans. Am. Math. Soc. 57 (1945), 123–154

    Article  MATH  MathSciNet  Google Scholar 

  7. Frink O.: Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505–514.

    Article  MATH  MathSciNet  Google Scholar 

  8. Grätzer G.: General Lattice Theory, Birkhäuser, New York, 1998.

    MATH  Google Scholar 

  9. Grillet P. A., Varlet J. C.: Complementedness conditions in lattices, Bull. Soc. r. Sci. Liège 36 (1967), 628–642.

    MATH  MathSciNet  Google Scholar 

  10. Halaš R.: Pseudocomplemented ordered sets, Arch. Math. (Brno) 29 (1993), 153–160.

    MATH  MathSciNet  Google Scholar 

  11. Halaš R.: Some properties of Boolean ordered sets, Czech. Math. J. (Praha), 46(121) (1996), 93–98.

    Google Scholar 

  12. Janowitz M. F.: Section semicomplemented lattices, Math. Z. 63 (1968), 63–76.

    Article  MathSciNet  Google Scholar 

  13. Jayaram C.: Complemented semilattices, Math. Sem. Notes 8 (1980), 259–267.

    MATH  MathSciNet  Google Scholar 

  14. V. V. Joshi and Waphare B. N.: Characterizations of 0-distributive posets, Math. Bohem. 130(1) (2005), 73–80.

    MATH  MathSciNet  Google Scholar 

  15. Larmerová J. and Rachunek J.: Translations of distributive and modular ordered sets, Acta. Univ. Palacki. Olomonc., 91 (1988), 13–23

    Google Scholar 

  16. McLaughlin, J. E.: Atomic lattices with unique comparable complements, Proc. Am. Math. Soc. 7 (1956), 864–866.

    Article  MATH  MathSciNet  Google Scholar 

  17. Niederle J.: Boolean and distributive ordered sets: Characterization and representation by sets, Order 12 (1995), 189–210.

    Article  MATH  MathSciNet  Google Scholar 

  18. Pawar M. M. and Waphare B. N.: On Stone posets and strongly pseudocomplemented posets, J. Indian Math. Soc. (N.S.) 68(1–4) (2001), 91–95.

    MATH  MathSciNet  Google Scholar 

  19. Saarimäki M.: Disjointness of lattice elements, Math. Nachr. 159 (1992), 169–174

    Article  MATH  MathSciNet  Google Scholar 

  20. Salii V.N.: Lattices with unique complements, Transl. Math. Monogr., Amer. Math. Soc. Providence, RI 69 (1988).

  21. Thakare N. K., Maeda S. and Waphare B.N.: Modular pairs and covering property in posets, J. Indian Math. Soc. (N.S.) (in press).

  22. Thakare N.K., Pawar M.M. and Waphare B.N.: Modular pairs, standard elements, neutral elements and related results in posets, J. Indian Math. Soc. (N.S.)(to appear).

  23. Varlet, J.: Contributions à l'étude des treillis pseudo-complémentés et des treillis de Stone, Mém. Soc. R. Sci. Liege, Collect 8 (1963), 1–71.

    MathSciNet  Google Scholar 

  24. Venkatanarasimhan P.V.: Pseudo-complements in posets, Proc. Am. Math. Soc. 28(No.1) (1971), 9–17.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Waphare.

Additional information

Mathematics Subject Classification (2001)

06A06, 06A11, 06C15, 06C20, 06D15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waphare, B.N., Joshi, V.V. On Uniquely Complemented Posets. Order 22, 11–20 (2005). https://doi.org/10.1007/s11083-005-9002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-005-9002-0

Key words