Fast Euler–Maruyama method for weakly singular stochastic Volterra integral equations with variable exponent | Numerical Algorithms Skip to main content
Log in

Fast Euler–Maruyama method for weakly singular stochastic Volterra integral equations with variable exponent

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider the weakly singular stochastic Volterra integral equations with variable exponent. Firstly, the existence and uniqueness of the equations are studied by the Banach contraction mapping principle. Secondly, we develop an Euler–Maruyama (EM) method and obtain its strong convergence rate. Moreover, we propose a fast EM method via the exponential-sum-approximation technique to reduce the EM method’s computational cost. More specifically, if one disregards the Monte Carlo sampling error, then the fast EM method reduces the computational cost from \(O(N^2)\) to \(O(N\log ^{2} N)\) and the storage from O(N) to \(O(\log ^{2} N)\), where N is the total number of time steps. Moreover, if the sampling error is taken into account, we employ the multilevel Monte Carlo method based on the fast EM method to reduce computational costs further. Significantly, the computational costs of the EM method and the fast EM method to achieve an accuracy of O(ε) (ε < 1) are reduced from \(O(\varepsilon ^{-2-\frac {2}{\widetilde {\alpha }}})\) and \(O(\varepsilon ^{-2-\frac {1}{\widetilde {\alpha }}}\log ^{2}(\varepsilon ))\), respectively, to \(O\Big (\varepsilon ^{-\frac {1}{\widetilde {\alpha }}} (\log (\varepsilon ^{-1}))^{3}\Big )\), where \(\widetilde {\alpha }=\min \limits \{1-\alpha ^{\ast }, \frac 12-\beta ^{\ast }\}\) is related to the exponents of the singular kernel in the equations. Finally, numerical examples are provided to illustrate our theoretical results and demonstrate the superiority of the fast EM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Berger, M. A., Mizel, V. J.: Volterra equations with itô integrals. I. J. Integral Eq. 2(3), 187–245 (1980)

    MATH  Google Scholar 

  2. Berger, M. A., Mizel, V. J.: Volterra equations with itô integrals. II J. Integral Eq. 2(4), 319–337 (1980)

    MATH  Google Scholar 

  3. Protter, P.: Volterra equations driven by semimartingales. Ann. Probab. 13(2), 519–530 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Z.: Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels and non-Lipschitz coefficients. Statist. Probab. Lett. 78(9), 1062–1071 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, X.: Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J. Differential Eq. 244(9), 2226–2250 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, M., Huang, C., Hu, Y.: Asymptotic separation for stochastic Volterra integral equations with doubly singular kernels. Appl. Math. Lett. 113, 106880–7 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, M., Huang, C., Hu, P., Wen, J.: Mean-square stability and convergence of a split-step theta method for stochastic Volterra integral equations. J. Comput. Appl. Math. 382, 113077–14 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, M., Huang, C., Wen, J.: A two-parameter Milstein method for stochastic Volterra integral equations. J. Comput. Appl. Math. 404, 113870–20 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liang, H., Yang, Z., Gao, J.: Strong superconvergence of the Euler-Maruyama method for linear stochastic Volterra integral equations. J. Comput. Appl. Math. 317, 447–457 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xiao, Y., Shi, J.N., Yang, Z.W.: Split-step collocation methods for stochastic Volterra integral equations. J. Integral Eq. Appl. 30(1), 197–218 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Wen, C.H., Zhang, T.S.: Improved rectangular method on stochastic Volterra equations, vol. 235 (2011)

  12. Dai, X., Bu, W., Xiao, A.: Well-posedness and EM approximations for non-Lipschitz stochastic fractional integro-differential equations. J. Comput. Appl. Math. 356, 377–390 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, X., Xiao, A.: Lévy-driven stochastic Volterra integral equations with doubly singular kernels: existence, uniqueness, and a fast EM method. Adv. Comput. Math. 46(2), 29–23 (2020)

    Article  MATH  Google Scholar 

  14. Li, M., Huang, C., Hu, Y.: Numerical methods for stochastic Volterra integral equations with weakly singular kernels. IMA J. Numer. Anal. 42(3), 2656–2683 (2022)

  15. Richard, A., Tan, X., Yang, F.: Discrete-time simulation of stochastic Volterra equations. Stochastic Process. Appl. 141, 109–138 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chepizhko, O., Peruani, F.: Diffusion, subdiffusion, and trapping of active particles in heterogeneous media. Phys. Rev. Lett. 111(16), 160604 (2013)

    Article  Google Scholar 

  17. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22(1), 27–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng, X., Zhang, Z., Wang, H.: Analysis of a nonlinear variable-order fractional stochastic differential equation. Appl. Math. Lett. 107, 106461–7 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, Z., Zheng, X., Zhang, Z., Wang, H.: Strong convergence of a Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise. Chaos Solitons Fractals 142, 110392–10 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, P., Yang, Z., Wang, H., Song, R.: Time fractional stochastic differential equations driven by pure jump Lévy noise. J. Math. Anal. Appl. 504(2), 125412–32 (2021)

    Article  MATH  Google Scholar 

  21. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19(1), 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J.-L., Fang, Z.-W., Sun, H.-W.: Exponential-sum-approximation technique for variable-order time-fractional diffusion equations. J. Appl. Math. Comput. 68(1), 323–347 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, J., Wu, H.: A fast algorithm for simulation of rough volatility models. Quant. Finance 22(3), 447–462 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Giles, M. B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Giles, M.B.: Multilevel Monte Carlo methods, vol. 24 (2015)

  27. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations Cambridge Monographs on Applied and Computational Mathematics, vol. 15. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  28. Gorenflo, R., Kilbas, A. A., Mainardi, F., Rogosin, S. V.: Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  29. Beylkin, G., Monzón, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28(2), 131–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

M. Li was supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan, Grant Number : CUG2106127 and CUGST2), China Postdoctoral Science Foundation (Grant No. 2021M703008). and the National Science Foundation of China, No 12201586. C. Huang was supported by the National Science Foundation of China, Nos. 12171177 and 12011530058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Dai, X. & Huang, C. Fast Euler–Maruyama method for weakly singular stochastic Volterra integral equations with variable exponent. Numer Algor 92, 2433–2455 (2023). https://doi.org/10.1007/s11075-022-01397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01397-6

Keywords

Navigation