The generalized quadrature method for a class of highly oscillatory Volterra integral equations | Numerical Algorithms Skip to main content
Log in

The generalized quadrature method for a class of highly oscillatory Volterra integral equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A generalized quadrature method is studied for Volterra integral equations with highly oscillatory kernels. According to the kernel, a two-point quadrature rule is constructed by Lagrange’s identity at first. The error of the quadrature formula is presented as well. Then, it is employed to discretize the highly oscillatory equation without the need to compute moment. For the convergence, the asymptotic order as well as the classical order of the quadrature method for equation is analyzed. It is shown that the method has asymptotic order two and converges with order two as step length decreases. Some numerical examples are conducted to test its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations Cambridge Monographs on Applied and Computational Mathematics, vol. 15. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  2. Brunner, H.: On Volterra integral operators with highly oscillatory kernels. Discrete Contin. Dyn. Syst. 34(3), 915–929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunner, H.: Volterra Integral Equations. Cambridge University Press, Cambridge (2017). An introduction to theory and applications

    Book  MATH  Google Scholar 

  4. Cardone, A., D’Ambrosio, R., Paternoster, B.: High order exponentially fitted methods for Volterra integral equations with periodic solution. Appl. Numer. Math. 114, 18–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cardone, A., Ixaru, L.G., Paternoster, B.: Exponential fitting Direct Quadrature methods for Volterra integral equations. Numer. Algorithms 55(4), 467–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cardone, A., Ixaru, L.G., Paternoster, B., Santomauro, G.: Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution. Math. Comput. Simul. 110, 125–143 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, K.C., Evans, G.A., Webster, J.R.: A method to generate generalized quadrature rules for oscillatory integrals. Appl. Numer. Math. 34(1), 85–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evans, G.A., Chung, K.C.: Some theoretical aspects of generalised quadrature methods. J. Complexity 19(3), 272–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, G., Xiang, S., Xu, Z.: A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels. J. Comput. Appl. Math. 300, 354–368 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, C., Vandewalle, S.: Stability of runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays. Front. Math. China 4(1), 63–87 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2057), 1383–1399 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Ixaru, L.G., Vanden Berghe, G.: Exponential fitting. Kluwer Academic Publishers, Dordrecht. With 1 CD-ROM (Windows, Macintosh and UNIX) (2004)

  13. Levin, D.: Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations. Math. Comp. 38(158), 531–538 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, J., Wang, X., Xiao, S., Wang, T.: A rapid solution of a kind of 1D Fredholm oscillatory integral equation. J. Comput. Appl. Math. 236 (10), 2696–2705 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, M., Huang, C.: The linear barycentric rational quadrature method for auto-convolution Volterra integral equations. J. Sci. Comput. 78(1), 549–564 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Linz, P.: Analytical and Numerical Methods for Volterra Equations SIAM Studies in Applied Mathematics, vol. 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1985)

    Book  Google Scholar 

  17. Lubich, C.: Runge-Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comp. 41(163), 87–102 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, J., Xiang, S.: A collocation boundary value method for linear Volterra integral equations. J. Sci. Comput. 71(1), 1–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, B., Wu, X.: Improved Filon-type asymptotic methods for highly oscillatory differential equations with multiple time scales. J. Comput. Phys. 276, 62–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiang, S.: Efficient Filon-type methods for \({{\int \limits }^{b_{a}}f(x)e^{i{\omega } g(x)}dx}\). Numer. Math. 105(4), 633–658 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xiang, S., Brunner, H.: Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels. BIT 53(1), 241–263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xiang, S., Gui, W.: On generalized quadrature rules for fast oscillatory integrals. Appl. Math. Comput. 197(1), 60–75 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Xiang, S., He, K.: On the implementation of discontinuous Galerkin methods for Volterra integral equations with highly oscillatory Bessel kernels. Appl. Math. Comput. 219(9), 4884–4891 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Zhao, L., Fan, Q., Ming, W.: Efficient collocation methods for Volterra integral equations with highly oscillatory kernel. J. Comput. Appl. Math. 404 (113), 871 (2021)

    MathSciNet  Google Scholar 

  25. Zhao, L., Huang, C.: An adaptive Filon-type method for oscillatory integrals without stationary points. Numer. Algorithms 75(3), 753–775 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, L., Huang, C.: Exponential fitting collocation methods for a class of Volterra integral equations. Appl. Math. Comput. 376(125), 121 (2020)

    MathSciNet  Google Scholar 

  27. Zhao, L., Wang, P.: Error estimates of piecewise Hermite collocation method for highly oscillatory Volterra integral equation with Bessel kernel. Math. Comput. Simulation 196, 137–150 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their valuable comments and suggestions which lead to an improvement of this paper.

Funding

This work was supported by NSF of China (Nos. 12171177, 11771163) and the Fundamental Research Funds for the Universities of Henan Province (No. NSFRF220409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Huang, C. The generalized quadrature method for a class of highly oscillatory Volterra integral equations. Numer Algor 92, 1503–1516 (2023). https://doi.org/10.1007/s11075-022-01350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01350-7

Keywords

Navigation