A new step size rule for the superiorization method and its application in computerized tomography | Numerical Algorithms Skip to main content
Log in

A new step size rule for the superiorization method and its application in computerized tomography

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider a regularized least squares problem subject to convex constraints. Our algorithm is based on the superiorization technique, equipped with a new step size rule which uses subgradient projections. The superiorization method is a two-step method where one step reduces the value of the penalty term and the other step reduces the residual of the underlying linear system (using an algorithmic operator T). For the new step size rule, we present a convergence analysis for the case when T belongs to a large subclass of strictly quasi-nonexpansive operators. To examine our algorithm numerically, we consider box constraints and use the total variation (TV) functional as a regularization term. The specific test cases are chosen from computed tomography using both noisy and noiseless data. We compare our algorithm with previously used parameters in superiorization. The T operator is based on sequential block iteration (for which our convergence analysis is valid), but we also use the conjugate gradient method (without theoretical support). Finally, we compare with the well-known “fast iterative shrinkage-thresholding algorithm” (FISTA). The numerical results demonstrate that our new step size rule improves previous step size rules for the superiorization methodology and is competitive with, and in several instances behaves better than, the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  Google Scholar 

  2. Beck, A., Guttmann-Beck, N.: FOM–a MATLAB toolbox of first-order methods for solving convex optimization problems. Optim. Methods Softw 34(1), 172–193 (2019)

    Article  MathSciNet  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  4. Björck, Å.: Numerical Methods for Least Squares Problems, vol. 51. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  5. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.G.: Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 1(4), 540–547 (2007)

    Article  Google Scholar 

  6. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces Springer (2012)

  7. Cegielski, A., Al-Musallam, F.: Superiorization with level control. Inv. Probl. 33(4), 044009 (2017)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y.: Weak and strong superiorization: between feasibility-seeking and minimization. Analele Universitatii Ovidius Constanta-Seria Matematica 23(3), 41–54 (2015)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y.: Can linear superiorization be useful for linear optimization problems? Inv. Probl. 33(4), 044006 (2017)

    Article  MathSciNet  Google Scholar 

  10. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inv. Probl. 26(6), 065008 (2010)

    Article  MathSciNet  Google Scholar 

  11. Censor, Y., Davidi, R., Herman, G.T., Schulte, R.W., Tetruashvili, L.: Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 160(3), 730–747 (2014)

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., Elfving, T.: Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem. SIAM J. Matrix Anal. Appl. 24(1), 40–58 (2002)

    Article  MathSciNet  Google Scholar 

  13. Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally relaxed orthogonal projection methods. SIAM J. Sci. Comput. 30(1), 473–504 (2008)

    Article  MathSciNet  Google Scholar 

  14. Censor, Y., Gordon, D., Gordon, R.: BICAV: an inherently parallel algorithm for sparse systems with pixel-dependent weighting. IEEE Trans. Med. Imaging 20(10), 1050–1060 (2001)

    Article  Google Scholar 

  15. Elfving, T., Nikazad, T.: Properties of a class of block-iterative methods. Inv. Probl. 25(11), 115011 (2009)

    Article  MathSciNet  Google Scholar 

  16. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  17. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  18. Hansen, P.C., Jørgensen, J.S.: AIR Tools II: algebraic iterative reconstruction methods, improved implementation. Numer. Algorithms 79(1), 107–137 (2018)

    Article  MathSciNet  Google Scholar 

  19. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections. Springer Science & Business Media, Berlin (2009)

    Book  Google Scholar 

  20. Herman, G.T., Garduño, E., Davidi, R., Censor, Y.: Superiorization: an optimization heuristic for medical physics. Med. Phys. 39(9), 5532–5546 (2012)

    Article  Google Scholar 

  21. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

  22. Nedic, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12(1), 109–138 (2001)

    Article  MathSciNet  Google Scholar 

  23. Neto, E.S.H., De Pierro, A.́R.: Incremental subgradients for constrained convex optimization: a unified framework and new methods. SIAM J. Optim. 20(3), 1547–1572 (2009)

    Article  MathSciNet  Google Scholar 

  24. Nikazad, T., Abbasi, M.: Perturbation-resilient iterative methods with an infinite pool of mappings. SIAM J. Numer. Anal. 53(1), 390–404 (2015)

    Article  MathSciNet  Google Scholar 

  25. Nikazad, T., Abbasi, M.: A unified treatment of some perturbed fixed point iterative methods with an infinite pool of operators. Inv. Probl. 33(4), 044002 (2017)

    Article  MathSciNet  Google Scholar 

  26. Nikazad, T., Abbasi, M., Elfving, T.: Error minimizing relaxation strategies in Landweber and Kaczmarz type iterations. J. Inv. Ill-posed Probl. 25 (1), 35–56 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Nikazad, T., Abbasi, M., Mirzapour, M.: Convergence of string-averaging method for a class of operators. Optim. Methods Softw. 31(6), 1189–1208 (2016)

    Article  MathSciNet  Google Scholar 

  28. Nikazad, T., Davidi, R., Herman, G.T.: Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inv. Probl. 28(3), 035005 (2012)

    Article  MathSciNet  Google Scholar 

  29. Penfold, S., Schulte, R.W., Censor, Y., Rosenfeld, A. B.: Total variation superiorization schemes in proton computed tomography image reconstruction. Med. Phys. 37(11), 5887–5895 (2010)

    Article  Google Scholar 

  30. Reem, D., De Pierro, A.: A new convergence analysis and perturbation resilience of some accelerated proximal forward–backward algorithms with errors. Inv. Probl. 33(4), 044001 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zibetti, M.V.W., Lin, C., Herman, G.T.: Total variation superiorized conjugate gradient method for image reconstruction. Inv. Probl. 34(3), 034001 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their detailed and constructive comments which much improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nikazad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we provide some reasons for picking subgradient projections rather than other non-ascent directions in Algorithm 2.

Let g and Ω be a convex function and a closed convex set, respectively. Furthermore, let

$$C=\text{argmin}_{x\in{{\varOmega}}} g(x),~z\in C,~x\not\in C,~x\in{{\varOmega}}$$

and denote a subgradient of g at x. Also, assume that there exists T > 0 such that xTΩ. We show that there exists t > 0 such that d(y, C) < d(x, C) where y = xt and d is a Euclidean metric on \(\mathbb {R}^{n}.\) Based on the definition of , we get 〈zx, 〉≤ g(z) − g(x). Since zC and xΩ, we get g(z) − g(x) < 0 which leads to 〈zx, 〉 < 0. Put 𝜃 = g(z) − g(x) < 0 and for t > 0 we have

$$ \begin{array}{@{}rcl@{}} \|z-y\|^{2}&=&\|z-x+t\ell\|^{2}=\langle z-x+t\ell, z-x+t\ell\rangle\\ &=&\|z-x\|^{2}+2t\langle z-x, \ell\rangle+t^{2}\|\ell\|^{2}\\ &\leq&\|z-x\|^{2}+2t\theta+t^{2}\|\ell\|^{2}\\ &=&\|z-x\|^{2}+t(2\theta+t\|\ell\|^{2}). \end{array} $$

Since 𝜃 < 0, we get that 2𝜃 + t2 < 0 for small enough t > 0. Therefore, we get

$$ \|z-y\|<\|z-x\|. $$
(32)

Since g is a convex function, we conclude that C is a convex set and consequently PC(x), the orthogonal projection of x onto C, exists. Replacing z by PC(x) in (32) leads to

$$ \|P_{C}(x)-y\|<\|P_{C}(x)-x\|=d(x,C). $$
(33)

Combining (33) and the fact that d(y, C) = ∥PC(y) − y∥≤∥PC(x) − y∥, we get d(y, C) < d(x, C). Note: for 0 < tT and xT, xΩ, we get y = xt = (t/T)(xT) + (1 − t/T)xΩ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikazad, T., Abbasi, M., Afzalipour, L. et al. A new step size rule for the superiorization method and its application in computerized tomography. Numer Algor 90, 1253–1277 (2022). https://doi.org/10.1007/s11075-021-01229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01229-z

Keywords

Mathematics Subject Classification (2010)

Navigation