Abstract
In this article, we consider the time-dependent convection-diffusion-reaction equation coupled with the Darcy equation. We propose a numerical scheme based on finite element methods for the discretization in space and the implicit Euler method for the discretization in time. We establish optimal a posteriori error estimates with two types of computable error indicators, the first one linked to the time discretization and the second one to the space discretization. Finally, numerical investigations are performed and presented.
Similar content being viewed by others
References
Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley-Interscience, New York (2000)
Alonso, A.: Error estimators for a mixed method. Numer. Math. 74, 385–395 (1996)
Amaziane, B., Bourgeois, M.: El fatini. m, adaptive mesh refinement for a finite Volume Method for flow and transport of radionuclides in heterogeneous porous media oil and gas science and technology -. Rev. IFP Energies Nouvelles 69(4), 687–699 (2014)
Arnold, D., Brezzi, F., Fortin, F.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)
Babuška, I., Rheinboldt, W. C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)
Bernardi, C., Dib, S., Girault, V., Hecht, F., Murat, F., Sayah, T.: Finite element method for Darcy’s problem coupled with the heat equation. Numer. Math. 139(2), 315–348 (2018)
Bernardi, C., Maarouf, S., Yakoub, D.: Spectral discretization of Darcy’s equations coupled with the heat equation. IMA J. Numer. Anal. 36(3), 1193–1216 (2015)
Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles De ProblèMes Aux Limites Elliptiques Collection “MathéMatiques Et Applications”, vol. 45. Springer, Berlin (2004)
Bernardi, C., Sayah, T.: A posteriori error analysis of the time-dependent Stokes equations with mixed boundary conditions. IMA J. Numer. Anal. 35(1), 179–198 (2015)
Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66(218), 465–476 (1997)
Chalhoub, N., Ern, A., Sayah, T., Vohralík, M.: A Posteriori Error Estimates for Unsteady Convection-Diffusion-Reaction Problems and the Finite Volume Method Springer Proceedings in Mathematics, vol. 4. Springer, Berlin, Heidelberg (2011)
Chalhoub, N., Omnes, P., Sayah, T., El Zahlaniyeh, R.: Full discretization of time dependent convection-diffusion-reaction equation coupled with the Darcy system. Calcolo 57, 4 (2020)
Chen, Z., Ewing, R.: Mathematical analysis for reservoir models. SIAM J. Math. Anal. 30, 431–453 (1999)
Chen, W., Wang, Y.: A posteriori estimate for the h(÷) conforming mixed finite element for the coupled Darcy-Stokes system. J. Comput. Appl. Math. 255, 502–516 (2014)
Cheng, H., Drouniou, J., Le, K.: Convergence analysis of a family of ELLAM schemes for a fully coupled model of miscible displacement in porous media. Numer. Math. 141, 353–397 (2019)
Clément, P.: Approximation by finite element functions using local regularisation. R.A.I.R.O Anal. Numer. 9, 77–84 (1975)
Desoer, C. A., Vidyasagar, M.: Feedback Systems Input-Output Properties. Electrical Sciences. Academic Press, New York (1975)
Dib, D., Dib, S., Sayah, T.: New numerical studies for Darcy’s problem coupled with the heat equation. Comput. Appl. Math. 39(1) (2020)
Dib, S., Girault, V., Hecht, F., Sayah, T.: A posteriori error estimates for Darcy’s problem coupled with the heat equation. ESAIM: M2AN 53(6), 2121–2159 (2019)
Drouniou, J., Eymard, R., Prignet, A., Talbot, K.: Unified convergence analysis of numerical shemes for a miscible displacement problem. Found. Comput. Math. 19, 333–374 (2019)
Ern, A., Guermond, J.: Theory and practice of finite elements. Appl. Math. Sci. 159 (2004)
Ern, A., Stephansen, A., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math., Elsevier 234(1), 114–130 (2010)
Fabrie, P., Gallouet, T.: Modeling wells in porous media flows. Mathematical Models and Methods in Applied Sciences. World Sci. Publish. 2000(10)(5), 673–709
Feng, X: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194, 883–910 (1995)
Gatica, G. N., Ruiz-Baier, R., Tierra, G.: A mixed finite element method for Darcy’s equations with pressure dependent porosity. Math. Comput. 85, 1–33 (2016)
Hecht, F.: New development in FreeFem++. J. Numer. Math. De Gruyter 20, 1–14 (2013)
Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75, 1659–1674 (2006)
Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)
Vidyasagar, M.: Nonlinear Systems Analysis, 2nd edn. Prentice Hall, Englewood Cliffs (1993)
Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM Journal on Numerical Analysis. Soc. Ind. Appl. Math. 45(4), 1570–1599 (2007)
Vohralík, M.: Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods. Numer. Math. 111 (1), 121–158 (2008)
Vohralík, M., Yousef, S.: A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows. Comput. Methods Appl. Mech. Engrg. 331, 728–760 (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chalhoub, N., Omnes, P., Sayah, T. et al. A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system. Numer Algor 89, 1247–1286 (2022). https://doi.org/10.1007/s11075-021-01152-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01152-3