A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system | Numerical Algorithms
Skip to main content

A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, we consider the time-dependent convection-diffusion-reaction equation coupled with the Darcy equation. We propose a numerical scheme based on finite element methods for the discretization in space and the implicit Euler method for the discretization in time. We establish optimal a posteriori error estimates with two types of computable error indicators, the first one linked to the time discretization and the second one to the space discretization. Finally, numerical investigations are performed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  2. Alonso, A.: Error estimators for a mixed method. Numer. Math. 74, 385–395 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amaziane, B., Bourgeois, M.: El fatini. m, adaptive mesh refinement for a finite Volume Method for flow and transport of radionuclides in heterogeneous porous media oil and gas science and technology -. Rev. IFP Energies Nouvelles 69(4), 687–699 (2014)

    Article  Google Scholar 

  4. Arnold, D., Brezzi, F., Fortin, F.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Rheinboldt, W. C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Dib, S., Girault, V., Hecht, F., Murat, F., Sayah, T.: Finite element method for Darcy’s problem coupled with the heat equation. Numer. Math. 139(2), 315–348 (2018)

  7. Bernardi, C., Maarouf, S., Yakoub, D.: Spectral discretization of Darcy’s equations coupled with the heat equation. IMA J. Numer. Anal. 36(3), 1193–1216 (2015)

  8. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles De ProblèMes Aux Limites Elliptiques Collection “MathéMatiques Et Applications”, vol. 45. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Bernardi, C., Sayah, T.: A posteriori error analysis of the time-dependent Stokes equations with mixed boundary conditions. IMA J. Numer. Anal. 35(1), 179–198 (2015)

  10. Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66(218), 465–476 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chalhoub, N., Ern, A., Sayah, T., Vohralík, M.: A Posteriori Error Estimates for Unsteady Convection-Diffusion-Reaction Problems and the Finite Volume Method Springer Proceedings in Mathematics, vol. 4. Springer, Berlin, Heidelberg (2011)

    MATH  Google Scholar 

  12. Chalhoub, N., Omnes, P., Sayah, T., El Zahlaniyeh, R.: Full discretization of time dependent convection-diffusion-reaction equation coupled with the Darcy system. Calcolo 57, 4 (2020)

  13. Chen, Z., Ewing, R.: Mathematical analysis for reservoir models. SIAM J. Math. Anal. 30, 431–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Wang, Y.: A posteriori estimate for the h(÷) conforming mixed finite element for the coupled Darcy-Stokes system. J. Comput. Appl. Math. 255, 502–516 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, H., Drouniou, J., Le, K.: Convergence analysis of a family of ELLAM schemes for a fully coupled model of miscible displacement in porous media. Numer. Math. 141, 353–397 (2019)

  16. Clément, P.: Approximation by finite element functions using local regularisation. R.A.I.R.O Anal. Numer. 9, 77–84 (1975)

    MATH  Google Scholar 

  17. Desoer, C. A., Vidyasagar, M.: Feedback Systems Input-Output Properties. Electrical Sciences. Academic Press, New York (1975)

    MATH  Google Scholar 

  18. Dib, D., Dib, S., Sayah, T.: New numerical studies for Darcy’s problem coupled with the heat equation. Comput. Appl. Math. 39(1) (2020)

  19. Dib, S., Girault, V., Hecht, F., Sayah, T.: A posteriori error estimates for Darcy’s problem coupled with the heat equation. ESAIM: M2AN 53(6), 2121–2159 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Drouniou, J., Eymard, R., Prignet, A., Talbot, K.: Unified convergence analysis of numerical shemes for a miscible displacement problem. Found. Comput. Math. 19, 333–374 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ern, A., Guermond, J.: Theory and practice of finite elements. Appl. Math. Sci. 159 (2004)

  22. Ern, A., Stephansen, A., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math., Elsevier 234(1), 114–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fabrie, P., Gallouet, T.: Modeling wells in porous media flows. Mathematical Models and Methods in Applied Sciences. World Sci. Publish. 2000(10)(5), 673–709

  24. Feng, X: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194, 883–910 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gatica, G. N., Ruiz-Baier, R., Tierra, G.: A mixed finite element method for Darcy’s equations with pressure dependent porosity. Math. Comput. 85, 1–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hecht, F.: New development in FreeFem++. J. Numer. Math. De Gruyter 20, 1–14 (2013)

    MATH  Google Scholar 

  27. Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75, 1659–1674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)

    MATH  Google Scholar 

  29. Vidyasagar, M.: Nonlinear Systems Analysis, 2nd edn. Prentice Hall, Englewood Cliffs (1993)

  30. Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM Journal on Numerical Analysis. Soc. Ind. Appl. Math. 45(4), 1570–1599 (2007)

    MATH  Google Scholar 

  31. Vohralík, M.: Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods. Numer. Math. 111 (1), 121–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vohralík, M., Yousef, S.: A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows. Comput. Methods Appl. Mech. Engrg. 331, 728–760 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca El Zahlaniyeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalhoub, N., Omnes, P., Sayah, T. et al. A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system. Numer Algor 89, 1247–1286 (2022). https://doi.org/10.1007/s11075-021-01152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01152-3

Keywords