A new computational method based on fractional Lagrange functions to solve multi-term fractional differential equations | Numerical Algorithms Skip to main content
Log in

A new computational method based on fractional Lagrange functions to solve multi-term fractional differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper explores a new method, called fractional pseudospectral method (FPM), which solves the linear and nonlinear fractional ordinary/partial differential equations (FODEs/FPDEs). After the required basic definitions are explained, we define a new class of interpolants, called fractional Lagrange functions (FLFs), so that they satisfy in the Kronecker delta function at collocation points. These functions can use as a new basis for the pseudospectral methods and can apply for developing a framework or theory in these methods. The Caputo fractional differentiation matrices are obtained for the FLFs; it has been shown that calculating these matrices is very simple and they are the generalization of differentiation matrices in the classical Lagrange functions. Furthermore, the matrices for combining the Ritz method and the fractional pseudospectral method are calculated, and Chebyshev’s theorem and the error estimate for interpolations are extended and proven on FLFs. To demonstrate the efficiency and convergence of FPM, three critical classes of well-known linear and nonlinear FODEs/FPDEs in engineering, physics, and applied sciences based on the five classes of the collocation points are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models. Imperial College Press, London (2010)

  2. Duarte, F., Machado, J. A. T.: Chaotic phenomena and fractional–order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29(1–4), 315–342 (2002)

  3. Chester, W.: Resonant oscillations in closed tubes. J. Fluid Mech. 18, 44–64 (1964)

  4. Keller, J. J.: Propagation of simple non–linear waves in gas filled tubes with friction. Z.Angew. Math. Phys. 32, 170–181 (1981)

  5. Silva, M. F., Machado, J. A. T., Lopes, A. M.: Comparison of fractional and integer order control of an hexapod robot. Proc. Int. Design Eng. Tech. Conf. Comput. Info. Eng. Conf. 5, 667–676 (2003)

  6. Magin, R. L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

  7. Lubich, C.: On the stability of linear multistep methods for Volterra convolution equations. IMA J. Numer. Anal. 3, 439–465 (1983)

  8. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

  9. Sanz-Serna, J. M.: A numerical method for a partial integro–differential equation. SIAM J. Numer. Anal. 25, 319–327 (1988)

  10. Sugimoto, N.: Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

  11. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

  12. Diethelm, K., Ford, N. J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

  13. Diethelm, K., Ford, N. J., Freed, A. D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

  14. Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

  15. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion–wave system. Appl. Numer. Math. (2006) (2006) , 193–209 (2006)

  16. Sugimoto, N.: Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

  17. Blank, L.: Numerical Treatment of Differential Equations of Fractional Order, Manchester Centre for Computational Mathematics. University of Manchester (1996)

  18. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

  19. Li, X., Xu, C.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

  20. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)

  21. Lischke, A., Zayernouri, M., EM Karniadakis, G.: A Petrov–Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J. Sci. Comput. 39(3), A922–A946 (2017)

  22. Zayernouri, M., Karniadakis, G. E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257, 460–480 (2014)

  23. Zayernouri, M., Karniadakis, G. E.: Fractional Sturm–Liouville eigen–problems: theory and numerical approximations. J. Comput. Phys. 47, 2108–2131 (2013)

  24. Zayernouri, M., Karniadakis, G. E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)

  25. Khosravian-Arab, H., Dehghan, M., Eslahchi, M. R.: Fractional spectral and pseudo–spectral methods in unbounded domains: theory and applications. J. Comput. Phys. 338, 527–566 (2017)

  26. Ford, N. J., Morgado, M. L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, 874–891 (2013)

  27. Shen, J., Wang, Y.: Muntz–Galerkin methods and applications to mixed Dirichlet–Neumann boundary value problems. SIAM J. Sci. Comput. 38, A2357–A2381 (2016)

  28. Esmaeili, S., Shamsi, M., Luchko, Y.: Numerical solution of fractional differential equations with a collocation method based on Muntz polynomials. Comput. Math. Appl. 62(3), 918–929 (2011)

  29. Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)

  30. Kazem, S., Abbasbandy, S., Kumar, S.: Fractional–order Legendre functions for solving fractional–order differential equations. Appl. Math. Model. 37(7), 5498–5510 (2013)

  31. Khosravian-Arab, H., Dehghan, M., Eslahchi, M.R.: Fractional Sturm–Liouville boundary value problems in unbounded domains: theory and applications. J. Comput. Phys. 299, 526–560 (2015)

  32. Delkhosh, M.: Introduction of derivatives and integrals of fractional order and its applications. Appl. Math. Phys. 1(4), 103–119 (2013)

  33. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

  34. Li, C., Qian, D., Chen, Y.Q.: On Riemann–Liouville and Caputo derivatives. Discrete Dyn. Nature Soc. 2011, 562494 (2011)

  35. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, Chap. 3, Vol. 2004. Springer, Berlin. https://doi.org/10.1007/978--3--642--14574--2_3 (2010)

  36. Hong-ci, H.: On the stability of interpolation. J. Comput. Math. 1(1), 34–44 (1983)

  37. Cohen, A., Chkifa, A.: On the stability of polynomial interpolation using hierarchical sampling. Sampling Theory – A renaissance. https://doi.org/10.1007/978-3-319-19749-4_12ff, hal-01353241, 437–458

  38. Parand, K., Delkhosh, M.: Solving the nonlinear Schlomilch’s integral equation arising in ionospheric problems. Afr. Mat. 28(3), 459–480 (2017)

  39. Sauer, T.: Numerical analysis. Pearson Education, 2nd edn (2011)

  40. Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods in Fluid Dynamics, Springer–Verlag, New York (1987)

  41. Parand, K., Hemami, M.: A meta–heuristic approaches to improve the shape parameter in meshless RBF method for solving Burgers equation. Second National Conf. Meta–Heuristic Alg. Appl. Eng. Sci. 1–7 (2017)

  42. Parand, K., Delkhosh, M.: New numerical solution for solving nonlinear singular Thomas–Fermi differential equation. Bulletin Belgian Math. Soc. 24(3), 457–476 (2017)

  43. Parand, K., Delkhosh, M.: Accurate solution of the Thomas–Fermi equation using the fractional order of rational Chebyshev functions. J. Comput. Appl. Math. 317, 624–642 (2017)

  44. Parand, K., Hemami, M.: Numerical study of astrophysics equations by meshless collocation method based on compactly supported radial basis function. Int. J. Appl. Comput. Math. 3(2), 1053–1075 (2017)

  45. Solomonoff, A., Turkel, E.: Global properties of pseudospectral methods, J. Comput. Phys. 81, 239–276 (1989)

  46. Gottlieb, D.: The stability of pseudospectral–Chebyshev methods, Math. Comput. 36(153), 107–118 (1981)

  47. Gottlieb, D., Orszag, S.A., Turkel, E.: Stability of pseudospectral and finite–difference methods for variable coefficient problems, Math. Comput. 37(156), 293–305 (1981)

  48. Fornberg, B., Sloan, D.M.: A review of pseudospectral methods for solving partial differential equations, Acta Numerica 3, 203–267 (1994)

  49. Jackiewicz, Z., Renaut, R.A.: A note on stability of pseudospectral methods for wave propagation, J. Comput. Appl. Math. 143, 127–139 (2002)

  50. Bartels, R.H., Stewart, G.W.: Algorithm 432: solution of the matrix equation AX + XB = C. Comm. ACM. 15(9), 820–826 (1972)

  51. Jarlebring, E.: Lecture notes in numerical linear algebra: numerical methods for Lyapunov equations. https://people.kth.se/~eliasj/NLA/matrixeqs.pdf

  52. Simoncini, V.: A new iterative method for solving large–scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29(3), 1268–1288 (2007)

  53. He, J.: Nonlinear oscillation with fractional derivative and its applications, in: International Conference on Vibrating Engineering’98, Dalian, pp. 288–291 (1998)

  54. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vibr. Contr. https://doi.org/10.1177/1077546314567181 (2015)

  55. Moaddy, K., Momani, S., Hashim, I.: The non–standard finite difference scheme for linear fractional PDEs in fluid mechanics, Comput. Math. Appl. 61, 1209–1216 (2011)

  56. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett. 91, 034101–034104 (2003)

  57. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

  58. Miller, K.S., Ross, B.: An Introduction to The Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

  59. Odibat, Z. M., Momani, S.: An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inf. 26, 15–27 (2008)

  60. Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics, vol. 378. Springer (2014)

  61. Liu, F., Meerschaert, M. M., McGough, R. J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi–term time fractional wave–diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013)

  62. Boyd, J. P.: Rational Chebyshev series for the Thomas–Fermi function: endpoint singularities and spectral methods. J. Comput. Appl. Math. 244, 90–101 (2013)

  63. Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

  64. Gong, C., Bao, W., Tang, G., Jiang, Y., Liu, J.: Computational challenge of fractional differential equations and the potential solutions: a survey. Math. Problems Eng. ID 258265, pp. 13 (2015)

  65. Du, K.: Preconditioning fractional spectral collocation. arXiv:1510.05776v1 (2015)

  66. Jiao, Y., Wang, L.L., Huang, C.: Well–conditioned fractional collocation methods using fractional Birkhoff interpolation basis. J. Comput. Phys. 305, 1–28 (2016)

  67. Wang, L.L., Samson, M.D., Zhao, X.: A well–conditioned collocation method using a pseudospectral integration matrix. SIAM J. Sci. Comput. 36, A907–A929 (2014)

Download references

Acknowledgments

The authors are very grateful to reviewers and editor for carefully reading the paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Delkhosh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delkhosh, M., Parand, K. A new computational method based on fractional Lagrange functions to solve multi-term fractional differential equations. Numer Algor 88, 729–766 (2021). https://doi.org/10.1007/s11075-020-01055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01055-9

Keywords

Mathematics Subject Classification (2010)

Navigation