Convergence and stability of extended BBVMs for nonlinear delay-differential-algebraic equations with piecewise continuous arguments | Numerical Algorithms Skip to main content
Log in

Convergence and stability of extended BBVMs for nonlinear delay-differential-algebraic equations with piecewise continuous arguments

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Delay-differential-algebraic equations have been widely used to model some important phenomena in science and engineering. Since, in general, such equations do not admit a closed-form solution, it is necessary to solve them numerically by introducing suitable integrators. The present paper extends the class of block boundary value methods (BBVMs) to approximate the solutions of nonlinear delay-differential equations with algebraic constraint and piecewise continuous arguments. Under the classical Lipschitz conditions, convergence and stability criteria of the extended BBVMs are derived. Moreover, a couple of numerical examples are provided to illustrate computational effectiveness and accuracy of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wiener, J.: Generalized Solutions of Differential Equations. World Scientific, Singapore (1993)

    Book  Google Scholar 

  2. Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  3. Zhang, C., Li, C., Jiang, Y.: Extended block boundary value methods for neutral equations with piecewise constant argument. Appl. Numer. Math. 150, 182–193 (2019)

    Article  MathSciNet  Google Scholar 

  4. Huang, C., Chang, Q.: Stability analysis of Runge-Kutta methods for systems of functional-differential and functional equations. Nat. Sci. 11, 568–572 (2001)

    Google Scholar 

  5. Huang, C., Chang, Q.: Stability analysis of numerical methods for systems of functional differential and functional equations. Comput. Math. Appl. 44, 717–729 (2002)

    Article  MathSciNet  Google Scholar 

  6. Gan, S., Zheng, W.: Stability of multistep Runge-Kutta methods for systems of functional-differential and functional equations. Appl. Math. Lett. 17, 585–590 (2004)

    Article  MathSciNet  Google Scholar 

  7. Gan, S., Zheng, W.: Stability of General Linear Methods for systems of functional differential and functional equations. J. Comput. Math. 23, 37–48 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Gan, S.: Asymptotic stability of Rosenbrock methods for systems of functional differential and functional equations. Math. Comput. Model. 44, 144–150 (2006)

    Article  MathSciNet  Google Scholar 

  9. Yu, Y., Wen, L.: Stability analysis of one-leg methods for nonlinear functional differential and functional equations. J. Comput. Appl. Math. 235, 817–824 (2010)

    Article  MathSciNet  Google Scholar 

  10. Yu, Y., Liu, Z., wen, L.: Stability analysis of Runge-Kutta methods for nonlinear functional differential and functional equations. J. Appl. Math. 1, 1–9 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Brugnano, L., Trigiante, D.: Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66, 97–109 (1996)

    Article  MathSciNet  Google Scholar 

  12. Brugnano, L.: Essentially symplectic boundary value methods for linear Hamiltonian systems. J. Comput. Math. 15, 233–252 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Brugnano, L., Trigiante, D.: Block boundary value methods for linear Hamiltonian systems. Appl. Math. Comput. 81, 49–68 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Brugnano, L.: Boundary value method for the numerical approximation of ordinary differential equations. Lect. Notes Comput. Sci. 1196, 78–89 (1997)

    Article  MathSciNet  Google Scholar 

  15. Brugnano, L., Trigiante, D.: Boundary value methods: the third way between linear multistep and Runge-Kutta methods. Comput. Math. Appl. 36, 269–284 (1998)

    Article  MathSciNet  Google Scholar 

  16. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordan & Breach, Amsterdam (1998)

    MATH  Google Scholar 

  17. Iavernaro, F., Mazzia, F.: Block boundary value methods for the solution of ordinary differential equations. SIAM J. Sci. Comput. 21, 323–339 (1999)

    Article  MathSciNet  Google Scholar 

  18. Zhang, C., Chen, H.: Block boundary value methods for delay differential equations. Appl. Numer. Math. 60, 915–923 (2010)

    Article  MathSciNet  Google Scholar 

  19. Zhang, C., Chen, H.: Asymptotic stability of block boundary value methods for delay differential-algebraic equations. Math. Comput. Simul. 81, 100–108 (2010)

    Article  MathSciNet  Google Scholar 

  20. Chen, H., Zhang, C.: Boundary value methods for Volterra integral and integro-differential equations. Appl. Math. Comput. 218, 2619–2630 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Chen, H., Zhang, C.: Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations. Appl. Numer. Math. 62, 141–154 (2012)

    Article  MathSciNet  Google Scholar 

  22. Xu, Y., Zhao, J., Gao, Z.: Stability analysis of block boundary value methods for neutral pantograph equation. J. Differ. Equ. Appl. 19, 1227–1242 (2013)

    Article  MathSciNet  Google Scholar 

  23. Xu, Y., Zhao, J., Gao, Z.: Stability analysis of block boundary value methods for the neutral differential equation with many delays. Appl. Math. Model. 38, 325–335 (2014)

    Article  MathSciNet  Google Scholar 

  24. Li, C., Zhang, C.: Block boundary value methods applied to functional differential equations with piecewise continuous argument. Appl. Numer. Math. 115, 214–224 (2017)

    Article  MathSciNet  Google Scholar 

  25. Wang, H., Zhang, C., Zhou, Y.: A class of compact boundary value methods applied to semi-linear reaction-diffusion equations. Appl. Math. Comput. 325, 69–81 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Wang, H., Zhang, C.: The adapted block boundary value methods for singular initial value problems. Calcolo 55, 22–32 (2018)

    Article  MathSciNet  Google Scholar 

  27. Zhou, Y., Zhang, C.: Convergence and stability of block boundary value methods applied to nonlinear fractional differential equations with Caputo derivatives. Appl. Numer. Math. 135, 367–380 (2019)

    Article  MathSciNet  Google Scholar 

  28. Zhou, Y., Zhang, C., Brugnano, L.: Preconditioned quasi-compact boundary value methods for space-fractional diffusion equations. Numer. Algor. 84, 633–649 (2020)

    Article  MathSciNet  Google Scholar 

  29. Zhou, Y., Zhang, C., Wang, H.: Boundary value methods for Caputo fractional differential equations. J. Comput. Math. https://doi.org/10.4208/jcm.1907-m2018-0252 (2020)

  30. Yan, X., Zhang, C.: Solving nonlinear functional-differential and functional equations with constant delay via block boundary value methods. Math. Comput. Simul. 166, 21–32 (2019)

    Article  MathSciNet  Google Scholar 

  31. Yan, X., Zhang, C.: Numerical approximation to a class of nonlinear hybrid system with distributed delay via block boundary value methods. J. Comput. Appl. Math. 378, Article ID 112942 (2020)

    Article  MathSciNet  Google Scholar 

  32. Yan, X., Zhang, C: Compact block boundary value methods applied to a class of semi-linear delay-reaction-diffusion equation with algebraic constraint. Numer. Meth. Part. Diff. Equ. https://doi.org/10.1002/num.22474 (2020)

  33. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  34. Baker, C.T.H., Paul, C.A.H.: A global convergence theorem for a class of parrallel continuous explicit Runge-Kutta methods and vanishing lag delay differential equations. SIAM J. Numer. Anal. 33, 1559–1576 (1996)

    Article  MathSciNet  Google Scholar 

  35. Sun, Z.: Compact difference schemes for heat equation with Neumann boundary conditions. Numer. Meth. Part. Diff. Equ. 25, 1320–1341 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by NSFC (Grant No. 11971010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjian Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Yan, X. Convergence and stability of extended BBVMs for nonlinear delay-differential-algebraic equations with piecewise continuous arguments. Numer Algor 87, 921–937 (2021). https://doi.org/10.1007/s11075-020-00993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00993-8

Keywords

Navigation