Abstract
The Floater–Hormann family of the barycentric rational interpolants has recently gained popularity because of its excellent stability properties and highly order of convergence. The purpose of this paper is to design highly accurate and stable schemes based on this family of interpolants for the numerical solution of stiff Volterra integral equations of the second kind.
Similar content being viewed by others
References
Abdi, A.: General linear methods with large stability regions for Volterra integral equations. Comp. Appl. Math. 38(52), 1–16 (2019)
Abdi, A., Berrut, J.-P., Hosseini, S. A.: The linear barycentric rational method for a class of delay Volterra integro-differential equations. J. Sci. Comput. 75, 1757–1775 (2018)
Abdi, A., Fazeli, S., Hojjati, G.: Construction of efficient general linear methods for stiff Volterra integral equations. J. Comput. Appl. Math. 292, 417–429 (2016)
Abdi, A., Hosseini, S. A.: The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations. SIAM J. Sci. Comput. 40, A1936–A1960 (2018)
Abdi, A., Hosseini, S.A., Podhaisky, H.: Adaptive linear barycentric rational finite differences method for stiff ODEs. J. Comput. Appl. Math. 357, 204–214 (2019)
Baker, C. T. H., Keech, M. S.: Stability regions in the numerical treatment of Volterra integral equations. SIAM J. Numer. Anal. 15, 394–417 (1978)
Battles, Z., Trefethen, L. N.: An extension of Matlab to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)
Berrut, J. -P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988)
Berrut, J. -P.: Linear barycentric rational interpolation with guaranteed degree of exactness. In: Fasshauer, G.E., Schumaker, L.L. (eds.) Approximation Theory XV: San Antonio 2016, Springer Proceedings in Mathematics & Statistics, 1–20 (2017)
Berrut, J. -P., Hosseini, S. A., Klein, G.: The linear barycentric rational quadrature method for Volterra integral equations. SIAM J. Sci. Comput. 36, A105–A123 (2014)
Berrut, J. -P., Trefethen, L. N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)
Bistritz, Y.: A circular stability test for general polynomials. Syst. Control Lett. 7, 89–97 (1986)
Blom, J. G., Brunner, H.: The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods. SIAM J. Sci. Stat. Comput. 8, 806–830 (1987)
Brunner, H.: Collocation methods for Volterra integral and related functional equations. Cambridge University Press, Cambridge (2004)
Brunner, H., Nørsett, S.P., Wolkenfelt, P.H.M.: On V0-stability of numerical methods for Volterra integral equations of the second kind. Report NW84/80. Mathematish Centrum, Amsterdam (1980)
Brunner, H., van der Houwen, P. J.: The numerical solution of Volterra equations. CWI Monographs, North-Holland (1986)
Capobianco, G., Conte, D., Del Prete, I., Russo, E.: Fast Runge–Kutta methods for nonlinear convolution systems of Volterra integral equations. BIT 47, 259–275 (2007)
Conte, D., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for Volterra integral equations. Appl. Math. Comput. 204, 839–853 (2008)
Conte, D., Paternoster, B.: Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 59, 1721–1736 (2009)
Floater, M. S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007)
Guttel, S., Klein, G.: Convergence of linear barycentric rational interpolation for analytic functions. SIAM J. Numer. Anal. 50, 2560–2580 (2012)
Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6, 532–541 (1985)
Henrici, P.: Essentials of Numerical Analysis. John Wiley, New York (1982)
Hetcote, H. W., Tudor, D. W.: Integral equation models for endemic infectious diseases. J. Math. Biol. 9, 37–47 (1980)
Hoppensteadt, F. C., Jackiewicz, Z., Zubik-Kowal, B.: Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels. BIT 47, 325–350 (2007)
Hosseini, S. A., Abdi, A.: On the numerical stability of the linear barycentric rational quadrature method for Volterra integral equations. Appl. Numer. Math. 100, 1–13 (2016)
Izzo, G., Jackiewicz, Z., Messina, E., Vecchio, A.: General linear methods for Volterra integral equations. J. Comput. Appl. Math. 234, 2768–2782 (2010)
Izzo, G., Russo, E., Chiapparelli, C.: Highly stable Runge–Kutta methods for Volterra integral equations. Appl. Numer. Math. 62, 1002–1013 (2012)
Klein, G.: Applications of Linear Barycentric Rational Interpolation. University of Fribourg, PhD thesis (2012)
Klein, G., Berrut, J. -P.: Linear barycentric rational quadrature. BIT 52, 407–424 (2012)
Klein, G., Berrut, J. -P.: Linear rational finite differences from derivatives of barycentric rational interpolants. SIAM J. Numer. Anal. 50, 643–656 (2012)
Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985)
Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)
Trefethen, L. N.: Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50, 67–87 (2008)
Trefethen, L.N., et al.: Chebfun Version 5.6.0, The Chebfun Development Team. http://www.chebfun.org (2016)
van der Houwen, P. J., te Riele, H. J. J.: Backward differentiation type formulas for Volterra integral equations of the second kind. Numer. Math. 37, 205–217 (1981)
Acknowledgments
The results reported in this paper were obtained during the visit of the first and second authors to Martin-Luther-Universität Halle-Wittenberg in 2018, which was supported by the German Academic Exchange Service, DAAD. These authors wish to express their gratitude to H. Podhaisky for making this visit possible. Also, The work of the first author was supported by the University of Tabriz, Iran under Grant No. 816.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Abdi, A., Hosseini, S.A. & Podhaisky, H. Numerical methods based on the Floater–Hormann interpolants for stiff VIEs. Numer Algor 85, 867–886 (2020). https://doi.org/10.1007/s11075-019-00841-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00841-4