Numerical methods based on the Floater–Hormann interpolants for stiff VIEs | Numerical Algorithms Skip to main content
Log in

Numerical methods based on the Floater–Hormann interpolants for stiff VIEs

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The Floater–Hormann family of the barycentric rational interpolants has recently gained popularity because of its excellent stability properties and highly order of convergence. The purpose of this paper is to design highly accurate and stable schemes based on this family of interpolants for the numerical solution of stiff Volterra integral equations of the second kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdi, A.: General linear methods with large stability regions for Volterra integral equations. Comp. Appl. Math. 38(52), 1–16 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Abdi, A., Berrut, J.-P., Hosseini, S. A.: The linear barycentric rational method for a class of delay Volterra integro-differential equations. J. Sci. Comput. 75, 1757–1775 (2018)

    Article  MathSciNet  Google Scholar 

  3. Abdi, A., Fazeli, S., Hojjati, G.: Construction of efficient general linear methods for stiff Volterra integral equations. J. Comput. Appl. Math. 292, 417–429 (2016)

    Article  MathSciNet  Google Scholar 

  4. Abdi, A., Hosseini, S. A.: The barycentric rational difference-quadrature scheme for systems of Volterra integro-differential equations. SIAM J. Sci. Comput. 40, A1936–A1960 (2018)

    Article  MathSciNet  Google Scholar 

  5. Abdi, A., Hosseini, S.A., Podhaisky, H.: Adaptive linear barycentric rational finite differences method for stiff ODEs. J. Comput. Appl. Math. 357, 204–214 (2019)

    Article  MathSciNet  Google Scholar 

  6. Baker, C. T. H., Keech, M. S.: Stability regions in the numerical treatment of Volterra integral equations. SIAM J. Numer. Anal. 15, 394–417 (1978)

    Article  MathSciNet  Google Scholar 

  7. Battles, Z., Trefethen, L. N.: An extension of Matlab to continuous functions and operators. SIAM J. Sci. Comput. 25, 1743–1770 (2004)

    Article  MathSciNet  Google Scholar 

  8. Berrut, J. -P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988)

    Article  MathSciNet  Google Scholar 

  9. Berrut, J. -P.: Linear barycentric rational interpolation with guaranteed degree of exactness. In: Fasshauer, G.E., Schumaker, L.L. (eds.) Approximation Theory XV: San Antonio 2016, Springer Proceedings in Mathematics & Statistics, 1–20 (2017)

  10. Berrut, J. -P., Hosseini, S. A., Klein, G.: The linear barycentric rational quadrature method for Volterra integral equations. SIAM J. Sci. Comput. 36, A105–A123 (2014)

    Article  MathSciNet  Google Scholar 

  11. Berrut, J. -P., Trefethen, L. N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  12. Bistritz, Y.: A circular stability test for general polynomials. Syst. Control Lett. 7, 89–97 (1986)

    Article  MathSciNet  Google Scholar 

  13. Blom, J. G., Brunner, H.: The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods. SIAM J. Sci. Stat. Comput. 8, 806–830 (1987)

    Article  MathSciNet  Google Scholar 

  14. Brunner, H.: Collocation methods for Volterra integral and related functional equations. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  15. Brunner, H., Nørsett, S.P., Wolkenfelt, P.H.M.: On V0-stability of numerical methods for Volterra integral equations of the second kind. Report NW84/80. Mathematish Centrum, Amsterdam (1980)

    Google Scholar 

  16. Brunner, H., van der Houwen, P. J.: The numerical solution of Volterra equations. CWI Monographs, North-Holland (1986)

    MATH  Google Scholar 

  17. Capobianco, G., Conte, D., Del Prete, I., Russo, E.: Fast Runge–Kutta methods for nonlinear convolution systems of Volterra integral equations. BIT 47, 259–275 (2007)

    Article  MathSciNet  Google Scholar 

  18. Conte, D., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for Volterra integral equations. Appl. Math. Comput. 204, 839–853 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Conte, D., Paternoster, B.: Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 59, 1721–1736 (2009)

    Article  MathSciNet  Google Scholar 

  20. Floater, M. S., Hormann, K.: Barycentric rational interpolation with no poles and high rates of approximation. Numer. Math. 107, 315–331 (2007)

    Article  MathSciNet  Google Scholar 

  21. Guttel, S., Klein, G.: Convergence of linear barycentric rational interpolation for analytic functions. SIAM J. Numer. Anal. 50, 2560–2580 (2012)

    Article  MathSciNet  Google Scholar 

  22. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6, 532–541 (1985)

    Article  MathSciNet  Google Scholar 

  23. Henrici, P.: Essentials of Numerical Analysis. John Wiley, New York (1982)

    MATH  Google Scholar 

  24. Hetcote, H. W., Tudor, D. W.: Integral equation models for endemic infectious diseases. J. Math. Biol. 9, 37–47 (1980)

    Article  MathSciNet  Google Scholar 

  25. Hoppensteadt, F. C., Jackiewicz, Z., Zubik-Kowal, B.: Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels. BIT 47, 325–350 (2007)

    Article  MathSciNet  Google Scholar 

  26. Hosseini, S. A., Abdi, A.: On the numerical stability of the linear barycentric rational quadrature method for Volterra integral equations. Appl. Numer. Math. 100, 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  27. Izzo, G., Jackiewicz, Z., Messina, E., Vecchio, A.: General linear methods for Volterra integral equations. J. Comput. Appl. Math. 234, 2768–2782 (2010)

    Article  MathSciNet  Google Scholar 

  28. Izzo, G., Russo, E., Chiapparelli, C.: Highly stable Runge–Kutta methods for Volterra integral equations. Appl. Numer. Math. 62, 1002–1013 (2012)

    Article  MathSciNet  Google Scholar 

  29. Klein, G.: Applications of Linear Barycentric Rational Interpolation. University of Fribourg, PhD thesis (2012)

    MATH  Google Scholar 

  30. Klein, G., Berrut, J. -P.: Linear barycentric rational quadrature. BIT 52, 407–424 (2012)

    Article  MathSciNet  Google Scholar 

  31. Klein, G., Berrut, J. -P.: Linear rational finite differences from derivatives of barycentric rational interpolants. SIAM J. Numer. Anal. 50, 643–656 (2012)

    Article  MathSciNet  Google Scholar 

  32. Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985)

    Book  Google Scholar 

  33. Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra integral equations and the convergence analysis. J. Comput. Math. 26, 825–837 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Trefethen, L. N.: Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  Google Scholar 

  35. Trefethen, L.N., et al.: Chebfun Version 5.6.0, The Chebfun Development Team. http://www.chebfun.org (2016)

  36. van der Houwen, P. J., te Riele, H. J. J.: Backward differentiation type formulas for Volterra integral equations of the second kind. Numer. Math. 37, 205–217 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The results reported in this paper were obtained during the visit of the first and second authors to Martin-Luther-Universität Halle-Wittenberg in 2018, which was supported by the German Academic Exchange Service, DAAD. These authors wish to express their gratitude to H. Podhaisky for making this visit possible. Also, The work of the first author was supported by the University of Tabriz, Iran under Grant No. 816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, A., Hosseini, S.A. & Podhaisky, H. Numerical methods based on the Floater–Hormann interpolants for stiff VIEs. Numer Algor 85, 867–886 (2020). https://doi.org/10.1007/s11075-019-00841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00841-4

Keywords

Mathematics Subject Classification (2010)

Navigation