Two-grid methods of finite element solutions for semi-linear elliptic interface problems | Numerical Algorithms Skip to main content
Log in

Two-grid methods of finite element solutions for semi-linear elliptic interface problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present two efficient two-grid algorithms for solving two-dimensional semi-linear elliptic interface problems using finite element method. To linearize the finite element equations, the Newton iteration approach and correction technique are applied. The new two-grid schemes reduce the solution of the semi-linear interface problem on a fine grid to one linear interface equation on the same fine grid and an original interface problem on a much coarser grid. Therefore, the new schemes save total computational cost. Theoretical analysis shows that the two-grid methods maintain asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press (1975)

  2. Antal, I., Karátson, J.: Mesh independent superlinear convergence of an inner-outer iterative method for semilinear elliptic interface problems. J. Comput. Appl. Math. 226(2), 190–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5(3), 207–213 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyer, F., Hubert, F.: Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46(6), 3032–3070 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6(1), 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burton, W.K., Cabrera, N., Frank, F.C.: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. 243(243), 299–358 (1951)

    MathSciNet  MATH  Google Scholar 

  7. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. Society for Industrial and Applied Mathematics (2011)

  8. Cai, Z., He, C., Zhang, S.: Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55 (1), 400–418 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., He, C., Zhang, S.: Residual based a posteriori error estimate for interface problems: non-conforming linear elements. Math. Comput. 86(304), 1 (2017)

    Google Scholar 

  10. Chen, Y., Huang, Y.: A multi-level iterative method for solving finite element equations of nonlinear singular two point boundary value problems. Naturalence Journal of Xiangtan University 16(1), 23–26 (1994)

    MATH  Google Scholar 

  11. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite element solution of semilinear reaction-diffusion equations. Int. J. Numer. Methods Eng. 57(2), 193–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Y., Liu, H., Liu, S.: Analysis of two grid methods for reaction-diffusion equations by expanded mixed finite element methods. Int. J. Numer. Methods Eng. 69(2), 408–422 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Y., Wang, Y., Huang, Y., et al.: Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems[J]. Applied Numerical Mathematics (2019)

  15. Chu, C., Graham, I., Hou, T.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79(272), 1915–1955 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35(2), 435–452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fenner, D.N.: Stress singularities in composite materials with an arbitrarily oriented crack meeting an interface. Int. J. Fract. 12(5), 705–721 (1976)

    Google Scholar 

  19. Huang, J., Zou, J.: A mortar element method for elliptic problems with discontinuous coefficients. IMA J. Numer. Anal. 22(4), 549–576 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holst, M., Szypowski, R., Zhu, Y.: Two-grid methods for semilinear interface problems. Numer. Methods Partial Differential Equations 29(5), 1729–1748 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kellogg, R.B.: On the poisson equation with intersecting interfaces. Appl. Anal. 4(2), 101–129 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kerkhoven, T., Jerome, J.W.: l stability of finite element approximations to elliptic gradient equations. Numer. Math. 57(1), 561–575 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kafafy, R., Lin, T., Lin, Y., Wang, J.: Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Methods Eng. 64(7), 940–972 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lamichhane, B.P., Wohlmuth, B.I.: Mortar finite elements for interface problems. Computing 72(3-4), 333–348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lehrenfeld, C., Reusken, A.: Optimal preconditioners for nitsche-XFEM discretizations of interface problems. Numer. Math. 135(2), 1–20 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. Society for Industrial and Applied Mathematics (1995)

  27. Li, Z., Lin, T., Wu, X.: New cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60(1), 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32(4), 1170–1184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meyer, G.H.: Multi-dimensional Stefan problems. SIAM J. Numer. Anal. 10 (3), 522–538 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peskina, C.S.: Numerical analysis of blood flow in the heart. Comput. 25(3), 220–252 (2015)

    MathSciNet  Google Scholar 

  32. Utnes, T.: Two grid finite element formulations of the incompressible Navier-Stokes equations. Commun. Numer. Methods Eng. 13(8), 675–684 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Y., Chen, Y.: A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian-Lagrangian localized adjoint methods. J. Math. Anal. Appl. 468(1), 406–422 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Chen, Y., Huang, Y., et al.: Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods. Applied Mathematics and Mechanics (English Edition) (2019)

  35. Wu, L., Allen, M.B.: A two-grid method for mixed finite element solution of reaction diffusion equations. Numer. Methods Partial Differential Equations 15(3), 317–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei, H., Chen, L., Huang, Y., Zheng, B.: Adaptive mesh refinement and superconvergence for two-dimensional interface problems. SIAM J. Sci. Comput. 36 (4), A1478–A1499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, J.: Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients[J]. Naturalence Journal of Xiangtan University. 1 (1982)

  38. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15(1), 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Mathematics of Computation of the American Mathematical Society 70(233), 17–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. ženîšek, A.: The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58(1), 51–77 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao, X., Chen, Y.: Mortar element method for the coupling of Navier-Stokes and Darcy flows. Adv. Appl. Math. Mech. 10(3), 710–734 (2018)

    Article  MathSciNet  Google Scholar 

  43. Zhou, J., Chen, L., Huang, Y., Wang, W.: An efficient two-grid scheme for the Cahn-Hilliard equation. Communications in Computational Physics 17(1), 127–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou, Y., Liu, J., Harry, D.: A matched interface and boundary method for solving multi-flow Navier–Stokes equations with applications to geodynamics. J. Comput. Phys. 231(1), 223–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by National Science Foundation of China (11671157, 11826212) and Hunan Provincial Innovation Foundation for Postgraduate (CX2017B273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, Q., Wang, Y. et al. Two-grid methods of finite element solutions for semi-linear elliptic interface problems. Numer Algor 84, 307–330 (2020). https://doi.org/10.1007/s11075-019-00756-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00756-0

Keywords

Navigation