Abstract
In this paper, we present two efficient two-grid algorithms for solving two-dimensional semi-linear elliptic interface problems using finite element method. To linearize the finite element equations, the Newton iteration approach and correction technique are applied. The new two-grid schemes reduce the solution of the semi-linear interface problem on a fine grid to one linear interface equation on the same fine grid and an original interface problem on a much coarser grid. Therefore, the new schemes save total computational cost. Theoretical analysis shows that the two-grid methods maintain asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical results.
Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. Academic Press (1975)
Antal, I., Karátson, J.: Mesh independent superlinear convergence of an inner-outer iterative method for semilinear elliptic interface problems. J. Comput. Appl. Math. 226(2), 190–196 (2009)
Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5(3), 207–213 (1970)
Boyer, F., Hubert, F.: Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46(6), 3032–3070 (2006)
Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6(1), 109–138 (1996)
Burton, W.K., Cabrera, N., Frank, F.C.: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. 243(243), 299–358 (1951)
Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. Society for Industrial and Applied Mathematics (2011)
Cai, Z., He, C., Zhang, S.: Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55 (1), 400–418 (2017)
Cai, Z., He, C., Zhang, S.: Residual based a posteriori error estimate for interface problems: non-conforming linear elements. Math. Comput. 86(304), 1 (2017)
Chen, Y., Huang, Y.: A multi-level iterative method for solving finite element equations of nonlinear singular two point boundary value problems. Naturalence Journal of Xiangtan University 16(1), 23–26 (1994)
Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)
Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite element solution of semilinear reaction-diffusion equations. Int. J. Numer. Methods Eng. 57(2), 193–209 (2003)
Chen, Y., Liu, H., Liu, S.: Analysis of two grid methods for reaction-diffusion equations by expanded mixed finite element methods. Int. J. Numer. Methods Eng. 69(2), 408–422 (2010)
Chen, Y., Wang, Y., Huang, Y., et al.: Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems[J]. Applied Numerical Mathematics (2019)
Chu, C., Graham, I., Hou, T.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79(272), 1915–1955 (2010)
Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35(2), 435–452 (1998)
Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)
Fenner, D.N.: Stress singularities in composite materials with an arbitrarily oriented crack meeting an interface. Int. J. Fract. 12(5), 705–721 (1976)
Huang, J., Zou, J.: A mortar element method for elliptic problems with discontinuous coefficients. IMA J. Numer. Anal. 22(4), 549–576 (2002)
Holst, M., Szypowski, R., Zhu, Y.: Two-grid methods for semilinear interface problems. Numer. Methods Partial Differential Equations 29(5), 1729–1748 (2012)
Kellogg, R.B.: On the poisson equation with intersecting interfaces. Appl. Anal. 4(2), 101–129 (1975)
Kerkhoven, T., Jerome, J.W.: l∞ stability of finite element approximations to elliptic gradient equations. Numer. Math. 57(1), 561–575 (1990)
Kafafy, R., Lin, T., Lin, Y., Wang, J.: Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Methods Eng. 64(7), 940–972 (2010)
Lamichhane, B.P., Wohlmuth, B.I.: Mortar finite elements for interface problems. Computing 72(3-4), 333–348 (2004)
Lehrenfeld, C., Reusken, A.: Optimal preconditioners for nitsche-XFEM discretizations of interface problems. Numer. Math. 135(2), 1–20 (2016)
Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. Society for Industrial and Applied Mathematics (1995)
Li, Z., Lin, T., Wu, X.: New cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)
Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60(1), 19–37 (2010)
Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32(4), 1170–1184 (1995)
Meyer, G.H.: Multi-dimensional Stefan problems. SIAM J. Numer. Anal. 10 (3), 522–538 (1973)
Peskina, C.S.: Numerical analysis of blood flow in the heart. Comput. 25(3), 220–252 (2015)
Utnes, T.: Two grid finite element formulations of the incompressible Navier-Stokes equations. Commun. Numer. Methods Eng. 13(8), 675–684 (2010)
Wang, Y., Chen, Y.: A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian-Lagrangian localized adjoint methods. J. Math. Anal. Appl. 468(1), 406–422 (2018)
Wang, Y., Chen, Y., Huang, Y., et al.: Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods. Applied Mathematics and Mechanics (English Edition) (2019)
Wu, L., Allen, M.B.: A two-grid method for mixed finite element solution of reaction diffusion equations. Numer. Methods Partial Differential Equations 15(3), 317–332 (2015)
Wei, H., Chen, L., Huang, Y., Zheng, B.: Adaptive mesh refinement and superconvergence for two-dimensional interface problems. SIAM J. Sci. Comput. 36 (4), A1478–A1499 (2014)
Xu, J.: Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients[J]. Naturalence Journal of Xiangtan University. 1 (1982)
Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15(1), 231–237 (1994)
Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)
Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Mathematics of Computation of the American Mathematical Society 70(233), 17–25 (2001)
ženîšek, A.: The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58(1), 51–77 (1990)
Zhao, X., Chen, Y.: Mortar element method for the coupling of Navier-Stokes and Darcy flows. Adv. Appl. Math. Mech. 10(3), 710–734 (2018)
Zhou, J., Chen, L., Huang, Y., Wang, W.: An efficient two-grid scheme for the Cahn-Hilliard equation. Communications in Computational Physics 17(1), 127–145 (2015)
Zhou, Y., Liu, J., Harry, D.: A matched interface and boundary method for solving multi-flow Navier–Stokes equations with applications to geodynamics. J. Comput. Phys. 231(1), 223–242 (2012)
Funding
This work is supported by National Science Foundation of China (11671157, 11826212) and Hunan Provincial Innovation Foundation for Postgraduate (CX2017B273).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, Y., Li, Q., Wang, Y. et al. Two-grid methods of finite element solutions for semi-linear elliptic interface problems. Numer Algor 84, 307–330 (2020). https://doi.org/10.1007/s11075-019-00756-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00756-0