New self-adaptive step size algorithms for solving split variational inclusion problems and its applications | Numerical Algorithms Skip to main content
Log in

New self-adaptive step size algorithms for solving split variational inclusion problems and its applications

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we study a special instance of the split inverse problem (SIP), which is the split variational inclusion problem (SVIP). Three simple iterative methods for solving it are introduced and weak and strong convergence theorems are established under mild and standard assumptions. As an application, the problem of minimizing two proper, convex, and lower semi-continuous functions is considered. We compare and illustrate the efficiency and applicability of our schemes for several numerical experiments as well as an example in the field of compressed sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansari, Q.H., Rehan, A.: Split Feasibility and Fixed Point Problems. Nonlinear Analysis. Approximation Theory, Optimization and Applications, pp 281–322. Springer, Berlin (2014)

    MATH  Google Scholar 

  2. Aubin, J.P.: Optima and Equilibria: an Introduction to Nonlinear Analysis. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  3. Bello Cruz, J.Y., Shehu, Y.: An iterative method for split inclusion problems without prior knowledge of operator norms. J. Fixed Point Theory Appl. 19, 2017–2036 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Prob. 18, 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Ceng, L.C., Ansari, Q.H., Yao, J.C.: An extragradient method for solving split feasibility and fixed point problems. Comput. Math. Apll. 64, 633–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensitymodulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2003)

    Article  Google Scholar 

  10. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dang, Y., Gao, Y.: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Prob. 27, ID 015007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gibali, A., Küfer, K.-H., Süss, P.: Reformulating the Pascoletti-Serafini problem as a bi-level optimization problem. Contemp. Math. 636, 121–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gibali, A., Liu, L.W, Tang, Y.C.: Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett. 1–14. https://doi.org/10.1007/s11590-017-1148-3 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gibali, A., Mai, D.T., Nguyen, T.V.: A new relaxed CQ algorithm for solving Split Feasibility Problems in Hilbert spaces and its applications. J. Indus. Manag. Optim. 2018, 1–25 (2018)

    MATH  Google Scholar 

  16. Halpern, B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73, 957–961 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kazmi, K.R., Rizvi, S.H.: An iterative method for split variational inclusion problem and fixed point problem of nonexpansive mappings. Optim. Lett. 8, 1113–1124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. López, G., Martin-Marquez, V., Xu, H.K.: Solving the split feasibilty problem without prior knowledge of matrix norms. Inverse Prob. 28, ID085004 (2012)

    Article  Google Scholar 

  19. Mainge, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325, 469–479 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mainge, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Prob. 26, 587–600 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moudafi A.: On the convergence of the forward-backward algoruthm for the null point problems. To appear

  24. Moudafi, A., Gibali, A.: l1l2 Regularization of split feasibility problems. Numer. Algorithms 1–19. https://doi.org/10.1007/s11075-017-0398-6 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moudafi A., Thakur B.S.: Solving proximal split feasibilty problem without prior knowledge of matrix norms. Optim. Lett. 8(7), 2099–2110 (2014). https://doi.org/10.1007/s11590-013-0708-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen, T.L.N, Shin, Y.: Deterministic sensing matrices in compressive sensing: a survey. Sci. World J. https://doi.org/10.1155/2013/192795 (2013)

    Article  Google Scholar 

  27. Nguyen, T.L.N., Shin, Y.: Deterministic sensing matrices in compressive sensing: a survey. Sci. World J. 2013, 1–6 (2013)

    Article  Google Scholar 

  28. Penfold, S., Zalas, R., Casiraghi, M., Brooke, M, Censor, Y., Schulte, R.: Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy. Phys. Med. Biol. 62, 3599–3618 (2017)

    Article  Google Scholar 

  29. Qin, X., Shang, M., Su, Y.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. Nonlinear Anal. 69, 3897–3909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sitthithakerngkiet, K., Deepho, J., Martinez-Moreno, J., Kuman, P.: Convergence analysis of a general iterative algorithm for finding a common solution of split variational inclusion and optimization problems. Numer Algor. https://doi.org/10.1007/s11075-017-0462-2 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shehu, Y., Iyiola, O.S.: Strong convergence result for proximal split feasibility problem in Hilbert spaces. Optimization 66(12), 2275–2290 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shehu, Y., Iyiola, O.S.: Convergence analysis for the proximal split feasibiliy problem using an inertial extrapolation term method. J. Fixed Point Theory Appl. 19, 2843–2510 (2017)

    Article  MATH  Google Scholar 

  33. Suantai, S., Shehu, Y., Cholamjiak, P.: Nonlinear iterative methods for solving the split common null point problem in Banach spaces. In Press: Optim. Methods Softw. https://doi.org/10.1080/10556788.2018.1472257

    Article  MathSciNet  MATH  Google Scholar 

  34. Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65, 281–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Xu, H.K.: Iterative algorithms for nonliear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  Google Scholar 

  38. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, Q.: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Prob. 20, 1261–1266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yukawa, M., Slavakis, K., Yamada, I.: Multi-domain adaptive filtering by feasibilty spliting. In: ICASSP, pp 3814–3817 (2010)

Download references

Acknowledgments

The authors express their deep gratitude to the referee and the editor for his/her valuable comments and suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (11471059) and the Science and Technology Research Project of Chongqing Municipal Education Commission (KJ 1706154) and the Research Project of Chongqing Technology and Business University (KFJJ2017069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Tang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Gibali, A. New self-adaptive step size algorithms for solving split variational inclusion problems and its applications. Numer Algor 83, 305–331 (2020). https://doi.org/10.1007/s11075-019-00683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00683-0

Keywords

Navigation