Modulus-based matrix splitting methods for horizontal linear complementarity problems | Numerical Algorithms Skip to main content
Log in

Modulus-based matrix splitting methods for horizontal linear complementarity problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we extend modulus-based matrix splitting iteration methods to horizontal linear complementarity problems. We consider both standard and accelerated methods and analyze their convergence. In this context, we also generalize existing results on modulus-based matrix splitting iteration methods for (non-horizontal) linear complementarity problems. Lastly, we analyze the proposed methods by numerical experiments involving both symmetric and non-symmetric matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Classics in Applied Mathematics. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  2. Zhang, Y.: On the convergence of a class on infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Optimiz. 4(1), 208–227 (1994)

    Article  MathSciNet  Google Scholar 

  3. Mezzadri, F., Galligani, E.: An inexact Newton method for solving complementarity problems in hydrodynamic lubrication. Calcolo 55(1) (2018)

  4. Gowda, M.: Reducing a monotone horizontal LCP to an LCP. Appl. Math. Lett. 8(1), 97–100 (1995)

    Article  MathSciNet  Google Scholar 

  5. Tütüncü, R.H., Todd, M.J.: Reducing horizontal linear complementarity problems. Linear Algebra Appl. 223/224, 717–729 (1995)

    Article  MathSciNet  Google Scholar 

  6. Ralph, D.: A stable homotopy approach to horizontal linear complementarity problems. Control Cybern. 31, 575–600 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Gao, X., Wang, J.: Analysis and application of a one-layer neural network for solving horizontal linear complementarity problems. Int. J. Comput. Int. Sys. 7(4), 724–732 (2014)

    Article  Google Scholar 

  8. Schäfer, U.: Verification methods for the horizontal linear complementarity problem. In: PAMM - Proceedings in Applied Mathematics and Mechanics, vol. 8, pp 10,799–10,800 (2008)

    Article  MathSciNet  Google Scholar 

  9. Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theory Appl. 180(2), 500–517 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  Google Scholar 

  11. van Bokhoven, W.: Piecewise-Linear Modelling and Analysis. Proefschrift, Eindhoven (1981)

    Google Scholar 

  12. Murty, K.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  13. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MathSciNet  Google Scholar 

  14. Zhang, L.-L., Ren Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26, 638–642 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Appl. Math. Lett. 26, 1159–1164 (2013)

    Article  MathSciNet  Google Scholar 

  16. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)

    Article  MathSciNet  Google Scholar 

  17. Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zheng, N., Yin, J.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Algorithms 64, 245–262 (2013)

    Article  MathSciNet  Google Scholar 

  19. Zheng, H., Li, W., Vong, S.: A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numer. Algorithms 74(1), 137–152 (2017)

    Article  MathSciNet  Google Scholar 

  20. Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer. Linear Algebra Appl. 24, e2105:1-15 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Li, R., Wang, Y., Yin, J.F.: On the convergence of two-step modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems with H+-matrices. Numer. Math. - Theory Me. 11, 128–139 (2018)

    Article  MathSciNet  Google Scholar 

  22. Ke, Y., Ma, C.: On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems. Appl. Math. Comput. 243, 413–418 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Xia, Z., Li, C.: Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems. Appl. Math. Comput. 271, 34–42 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Ma, C., Huang, N.: Modified modulus-based matrix splitting algorithms for a class of weakly nondifferentiable nonlinear complementarity problems. Appl. Numer. Math. 108, 116–124 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zheng, H.: Improved convergence theorems of modulus-based matrix splitting iteration method for nonlinear complementarity problems of h-matrices. Calcolo 54, 1481–1490 (2017)

    Article  MathSciNet  Google Scholar 

  26. Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)

    Article  MathSciNet  Google Scholar 

  27. Frommer, A., Szyld, D.B.: H-splittings and two-stage iterative methods. Numer. Math. 63, 345–356 (1992)

    Article  MathSciNet  Google Scholar 

  28. Sznajder, R., Gowda, M.S.: Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 695–715 (1995)

    Article  Google Scholar 

  29. Horn, R., Johnson, C.: Matrix Analysis. 2nd edn. Cambridge University Press, Cambridge (2013)

  30. Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors. Czech. Math. J. 12(3), 382–400 (1962)

    MathSciNet  MATH  Google Scholar 

  31. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  32. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics. Academic, New York (1970)

    Google Scholar 

  33. Bai, Z.-Z., Sun, J.-C., Wang, D.-R.: A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Computers Math. Applic. 32(12), 51–76 (1996)

    Article  MathSciNet  Google Scholar 

  34. Ortega, J.M.: Numerical Analysis: A Second Course. Computer Science and Applied Mathematics. Academic Press, New York and London (1972)

    Google Scholar 

Download references

Acknowledgments

The authors desire to thank the anonymous referees for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Mezzadri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzadri, F., Galligani, E. Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer Algor 83, 201–219 (2020). https://doi.org/10.1007/s11075-019-00677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00677-y

Keywords

Navigation