A novel approach to rigid spheroid models in viscous flows using operator splitting methods | Numerical Algorithms Skip to main content
Log in

A novel approach to rigid spheroid models in viscous flows using operator splitting methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Calculating cost-effective solutions to particle dynamics in viscous flows is an important problem in many areas of industry and nature. We implement a second-order symmetric splitting method on the governing equations for a rigid spheroidal particle model with torques, drag and gravity. The method splits the operators into a vector field that is conservative and one that takes into account the forces of the fluid. Error analysis and numerical tests are performed on perturbed and stiff particle-fluid systems. For the perturbed case, the splitting method greatly improves the solution accuracy, when compared to a conventional multistep method, and the global error behaves as \(\mathcal {O}(\varepsilon h^{2})\) for roughly equal computational cost. For stiff systems, we show that the splitting method retains stability in regimes where conventional methods blow up. In addition, we show through numerical experiments that the global order is reduced from \(\mathcal {O}(h^{2}/\varepsilon )\) in the perturbed regime to \(\mathcal {O}(h)\) in the stiff regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfredsson, P.H., Lundell, F., Sod̈erberg, L.D.: Fluid mechanics of papermaking. Annu. Rev. Fluid Mech 43, 195–217 (2011)

    Article  MATH  Google Scholar 

  2. Marti, I., Windhab, E.J., Fischer, P., Erni, P., Cramer, C.: Continuous flow structuring of anisotropic biopolymer particles. Adv. Colloid Interface Sci. 150, 16–26 (2009)

    Article  Google Scholar 

  3. Prather, K.A., Moffett, R.C.: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS 106, 72–77 (2009)

    Google Scholar 

  4. Kessler, J.O., Pedley, T.J.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 13–58 (1992)

    MATH  Google Scholar 

  5. Heymsfield, A.J.: Precipitation development in stratiform ice clouds: a microphysical and dynamical study. J. Atmos. Sci. 34, 67–81 (1977)

    Article  Google Scholar 

  6. van Hout, R., Sabban, L.: Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol Sci. 42, 67–82 (2011)

    Google Scholar 

  7. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tornberg, A., Gustavsson, K.: A numerical method for simulations of rigid fiber suspensions. J. Comput. Phys. 215, 172–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shin, M., Koch, D.L.: Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143–74 (2005)

    Article  MATH  Google Scholar 

  10. Khayat, R.E., Cox, R.G.: Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209, 435–62 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, H., Cox, R.: The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17, 561–595 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, R.: The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23, 625–643 (1965)

    Article  Google Scholar 

  13. Brenner, H.: The Stokes resistance of an arbitrary particle IV: arbitrary fields of flow. Chem. Eng. Sci. 19, 703–727 (1964)

    Article  Google Scholar 

  14. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, Ser. A 102, 161–179 (1922)

    Article  MATH  Google Scholar 

  15. Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)

  16. Zhang, H., Ahmadi, G., Fan, F.G., McLaughlin, J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiphase Flow 27, 971–1009 (2001)

    Article  MATH  Google Scholar 

  17. Challabotla, N.R., Nilsen, C., Andersson, H.I.: On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A. 379, 157–162 (2015)

    Article  MathSciNet  Google Scholar 

  18. Voth, G.A., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249–76 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics Differential. Addison-Wesley, Boston (2001)

    MATH  Google Scholar 

  20. Fan, F.G., Ahmadi, G.: Dispersion of ellipsoidal particle in an isotropic pseudo-turbulent flow field. ASME J. Fluids Eng. 117, 154–161 (1995)

    Article  Google Scholar 

  21. Celledoni, E., Fassó, F., Säfström, N., Zanna, A.: The exact computation of the free rigid body motion and its use in splitting methods. SIAM J. Sci. Comput. 30(4), 2084–2112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oberbeck, A.: Ueber stationare flussigkeitsbeweegungen mit berucksichtigung der inneren reibung. Crelle’s J. 81, 80–92 (1876)

  23. Meinke, M., Schröder, W., Siewert, C., Kunnen, R.P.J.: Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 45–56 (2014)

    Article  Google Scholar 

  24. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Second. Springer, New York (1999)

  25. Etheir, C.R., Steinman, D.A.: Exact fully 3D Navier-Stokes solutions for benchmarking. Int. J. Numer. Methods Fluids 19, 369–375 (1994)

    Article  MATH  Google Scholar 

  26. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  27. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Second. Springer, Berlin (2006)

  29. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A. 150, 262–268 (1990)

    Article  MathSciNet  Google Scholar 

  30. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A. 146, 319–323 (1990)

    Article  MathSciNet  Google Scholar 

  31. van Zon, R., Schofield, J.: Numerical implementation of the exact dynamics of free rigid bodies. J. Comput. Phys. 225, 145–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second. Springer, Berlin (1993)

  33. Mclachlan, R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35(2), 258–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Laskar, J., Robutel, P.: High order symplectic integrators for perturbed hamiltonian systems. Celest. Mech. Dyn. Astron. 80(1), 39–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kozlov, R., Kværnø, A., Owren, B.: The behaviour of the local error in splitting methods applied to stiff problems. J. Comput. Phys. 195, 576–593 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second. Springer, Berlin Heidelberg (1996)

    Book  MATH  Google Scholar 

Download references

Funding

This work has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement (no. 691070) as well as the SPIRIT project (no. 231632) under the Research Council of Norway FRIPRO funding scheme. Part of this work was done while visiting the University of Cambridge, UK and La Trobe University, Melbourne, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Tapley.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapley, B., Celledoni, E., Owren, B. et al. A novel approach to rigid spheroid models in viscous flows using operator splitting methods. Numer Algor 81, 1423–1441 (2019). https://doi.org/10.1007/s11075-019-00666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00666-1

Keywords

Navigation