Abstract
In this paper, we consider an inverse problem for determining the initial value of heat equation with inhomogeneous source on a columnar symmetric domain. The quasi-boundary value regularization method is applied to solve this inverse problem. Under the a priori and a posteriori regularization parameter choice rules, the convergence estimates between the regularization solution and the exact solution are given. The numerical examples show this regularization method is effective and stable for dealing with this problem.
Similar content being viewed by others
References
Ames, K.A., Clark, G.W., Epperson, J.F., Oppenheimer, S.F.: A comparison of regularizations for an ill-posed problem. Math. Comp. 67(224), 1451–1471 (1998)
Ames, K.A., Epperson, J.F.: A kernel-based method for the approximate solution of backward parabolic problems. SIAM J. Numer. Anal. 34(4), 1357–1390 (1997)
Cheng, W., Ma, Y.J., Fu, C.L.: Indentifying an unknown source term in radial heat conduction. Inverse Probl. Sci. Eng. 20(3), 335–349 (2012)
Denche, M., Bessila, K.: A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl. 301(2), 419–426 (2005)
Feng, X.L., Eldén, L., Fu, C.L.: A quasi-boundary-value method for the Cauchy problem for elliptic equations with nonhomogeneous Neumann data. J. Inverse Ill-Posed Probl. 18(6), 617–645 (2010)
Feng, X.L., Eldén, L.: Solving a Cauchy problem for a 3D elliptic PDE with variable coefficients by a quasi-boundary-value method. Inverse Probl. 30(1), 15005–15021 (2014)
Feng, X.L., Eldén, L., Fu, C.L.: Stability and regularization of a backward parabolic PDE with variable coefficients. J. Inverse Ill-Posed Probl. 18, 217–243 (2010)
Fu, C.L., Xiong, X.T., Qian, Z.: Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 331(1), 472–480 (2007)
Han, H., Ingham, D.B., Yuan, Y.: The boundary element method for the solution of the backward heat conduction equation. J. Comput. Phys. 116(2), 292–299 (1995)
Jourhmane, M., Mera, N.S.: An iterative algorithm for the backward heat conduction problem based on variable relaxation factors. Inverse Probl. Eng. 10(4), 293–308 (2002)
Lattès, R., Lions, J.L.: The method of quasi-reversibility. Applications to partial differential equations, translated from the French edition and edited by Richard Bellman. Modern analytic and computational methods in science and mathematics, vol. 18. American Elsevier Publishing Co., Inc., New York (1969)
Le, T. M., Pham, Q. H., Dang, T. D., Nguyen, T. H.: A backward parabolic equation with a time-dependent coefficient: regularization and error estimates. J. Comput. Appl. Math. 237, 432–441 (2013)
Liu, C.S.: Group preserving scheme for backward heat conduction problems. Int. J. Heat Mass Transf. 47(12-13), 2567–2576 (2004)
Liu, J.J.: Numerical solution of forward and backward problem for 2-d heat conduction equation. J. Comput. Appl. Math. 145(2), 459–482 (2002)
Liu, C.S., Chang, C.W., Chang, J.R.: Past cone dynamics and backward group preserving schemes for backward heat conduction problems. Comput. Model. Eng. Sci. 12(1), 67–81 (2006)
Liu, J.J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89(11), 1769–1788 (2010)
Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)
Mera, N.S.: The method of fundamental solutions for the backward heat conduction problem. Inverse Probl. Sci. Eng. 13(1), 65–78 (2005)
Mera, N.S., Elliott, L., Ingham, D.B., Lesnic, D.: An iterative boundary element method for solving the one-dimensional backward heat conduction problem. Int. J. Heat Mass Transf. 44(10), 1937–1946 (2001)
Qian, Z., Fu, C.L., Shi, R.: A modified method for a backward heat conduction problem. Appl. Math. Comput. 185(1), 564–573 (2007)
Qin, H.H., Wei, T.: Some filter regularization methods for a backward heat conduction problem. Appl. Math. Comput. 217(24), 10317–10327 (2011)
Seidman, T.I.: Optimal filtering for the backward heat equation. SIAM J. Numer. Anal. 33(1), 162–170 (1996)
Showalter, R.E.: The final value problem for evolution equations. J. Math. Anal. Appl. 47(3), 563–572 (1974)
Showalter, R.E.: Cauchy problem for hyper-parabolic partial differential equations. North-Holland Math. Stud. 110, 421–425 (1985)
Wang, J.G., Wei, T., Zhou, Y.B.: Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. Appl. Math. Model. 37, 8518–8532 (2013)
Xiong, X.T., Fu, C.L., Qian, Z.: Two numerical methods for a backward heat conduction equation. Appl. Math. Comput. 179, 370–377 (2006)
Funding
The project is supported by the National Natural Science Foundation of China (No. 11561045), the Doctor Fund of Lan Zhou University of Technology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, F., Sun, YR., Li, XX. et al. The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain. Numer Algor 82, 623–639 (2019). https://doi.org/10.1007/s11075-018-0617-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-018-0617-9