Abstract
For the second-order cone linear complementarity problems, abbreviated as SOCLCPs, we establish two classes of modulus-based matrix splitting iteration methods, which are obtained by reformulating equivalently the SOCLCP as an implicit fixed-point equation based on Jordan algebra associated with the second-order cone. The convergence of these modulus-based matrix splitting iteration methods has been established and the optimal iteration parameters of these methods are discussed when the splitting matrix is symmetric positive definite. Numerical experiments have shown that the modulus-based iteration methods are effective for solving the SOCLCPs.
Similar content being viewed by others
References
Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)
Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems volumes I and II. Springer-Verlag, New York (2003)
Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second order cone programming. Linear Algebra Appl. 284(1-3), 193–228 (1998)
Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95(2), 249–277 (2003)
Monteiro, R.D.C., Tsuchiya, T.: Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions. Math. Program. 88(1), 61–83 (2000)
Schmieta, S.H., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones. Math. Oper. Res. 26(3), 543–564 (2001)
Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones. Math. Program. 96(3), 409–438 (2003)
Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cone. SIAM J. Optim. 17(4), 1129–1153 (2005)
Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104(2), 293–327 (2005)
Chen, J.-S.: Two classes of merit functions for the second-order cone complementarity problem. Math. Methods Oper. Res. 64(3), 495–519 (2006)
Chen, J.-S., Pan, S.: A one-parametric class of merit functions for the second-order cone complementarity problem. Comput. Optim. Appl. 45(3), 581–606 (2010)
Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (2015)
Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15(2), 593–615 (2003)
Chen, X.-D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25(1), 39–56 (2003)
Pan, S., Chen, J.-S.: A damped Gauss-Newton method for the second-order cone complementarity problem. Appl. Math. Optim. 59(3), 293–318 (2009)
Fang, L., Han, C.-Y.: A new one-step smoothing newton method for the second-order cone complementarity problem. Math. Methods Appl. Sci. 34(3), 347–359 (2011)
Fang, L.: A smoothing-type Newton method for second-order cone programming problems based on a new smooth function. J. Appl. Math. Comput. 34(1), 147–161 (2010)
Narushima, Y., Sagara, N., Ogasawara, H.: A smoothing newton method with Fischer-Burmeister function for second-order cone complementarity problems. J. Optim. Theory Appl. 149(1), 79–101 (2011)
Zhang, X.-S., Liu, S.-Y., Liu, Z.-H.: A smoothing method for second order cone complementarity problem. J. Comput. Appl. Math. 228(1), 83–91 (2009)
Chen, L.-J., Ma, C.-F.: A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems. Comput. Math. Appl. 61(5), 1407–1418 (2011)
Ma, C.-F.: A regularized smoothing Newton method for solving the symmetric cone complementarity problem. Math. Comput. Model. 54(9-10), 2515–2527 (2011)
Hayashi, S., Yamaguchi, T., Yamashita, N., Fukushima, M.: A matrix-splitting method for symmetric affine second-order cone complementarity problems. J. Comput. Appl. Math. 175(2), 335–353 (2005)
Zhang, L.-H., Yang, W.-H.: An efficient matrix splitting method for the second-order cone complementarity problem. SIAM J. Optim. 24, 1178–1205 (2014)
Malik, M., Mohan, S.R.: On Q and R 0 properties of a quadratic representation in linear complementarity problems over the second-order cone. Linear Algebra Appl. 397(1), 85–97 (2005)
Pang, J.-S., Sun, D., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28(1), 39–63 (2003)
Gowda, M.S., Sznajder, R.: Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras. Math. Oper. Res. 31(1), 109–123 (2006)
Gowda, M.S., Sznajder, R.: Some global uniqueness and solvability results for linear complementarity problems over symmetric cones. SIAM J. Optim. 18(2), 461–481 (2007)
Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)
Faraut, U., Korányi, A.: Analysis on symmetric cones, Oxford Mathematical Monographs. Oxford University Press, New York (1994)
Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)
Yang, W.-H., Yuan, X. -M.: The GUS-property of second-order cone linear complementarity problems. Math. Program. 141, 295–317 (2013)
Ke, Y.-F., Ma, C.-F.: On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems. Appl. Math. Comput. 243, 413–418 (2014)
Murty, K.: Linear complementarity, linear and nonlinear programming. Heldermann, Berlin (1988)
Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)
Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algor. 57(1), 83–99 (2011)
Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Algor. 62(1), 100–112 (2013)
Zhang, L.-L., Ren, Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26(6), 638–642 (2013)
Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algor. 62(1), 59–77 (2013)
Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algor. 64(2), 245–262 (2013)
Zheng, N., Yin, J.-F.: Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H +-matrix. J. Comput. Appl. Math. 260(2), 281–293 (2014)
Hadjidimos, A., Lapidakis, M., Tzoumas, M.: On iterative solution for linear complementarity problem with an H +-matrix. SIAM J. Matrix Anal. Appl. 33(1), 97–110 (2012)
Zeng, M.-L., Zhang, G.-F.: Modulus-based GSTS iteration method for linear complementarity problems. J. Math. Study 48(1), 1–17 (2015)
Liu, S.-M., Zheng, H., Li, W.: A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems. Calcolo 53 (2), 189–199 (2016)
Kellogg, R.B.: Another alternating-direction-implicit method. J. Soc. Ind. Appl. Math. 11, 976–979 (1963)
Acknowledgments
The authors would like to express their great thankfulness to the referees for the comments and constructive suggestions, which are valuable in improving the quality of the original paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by China Postdoctoral Science Foundation (No.2017M620878), National Postdoctoral Program for Innovative Talents (No. BX201700234), Fujian Natural Science Foundation (No. 2016J01005), National Basic Research Program of China (No. 2014CB845906), and National Science Foundation of China (No. 41725017, 41590864). It is also partially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (No. XDB18010202), and the CAS/CAFEA international partnership Program for creative research teams (No. KZZD-EW-TZ-19).
Rights and permissions
About this article
Cite this article
Ke, YF., Ma, CF. & Zhang, H. The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. Numer Algor 79, 1283–1303 (2018). https://doi.org/10.1007/s11075-018-0484-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-018-0484-4