Recursive polynomial interpolation algorithm (RPIA) | Numerical Algorithms
Skip to main content

Recursive polynomial interpolation algorithm (RPIA)

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let x 0, x 1, ⋯ , x n be a set of n+1 distinct real numbers (i.e., x i x j for ij) and y 0, y 1, ⋯ , y n be given real numbers; we know that there exists a unique polynomial p n (x) of degree n such that p n (x i ) = y i for i = 0, 1, ⋯ , n; p n is the interpolation polynomial for the set {(x i , y i ), i = 0, 1, ⋯ , n}. The polynomial p n (x) can be computed by using the Lagrange method or the Newton method. This paper presents a new method for computing interpolation polynomials. We will reformulate the interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the recursive polynomial interpolation algorithm (RPIA). Some properties of this algorithm will be studied and some examples will also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atteia, M., Pradel, M.: Eléments d’analyse numérique, CEPADUES-Editions (1990)

  2. Brezinski, C.: Recursive interpolation, extrapolation and projection. J. Comput. Appl. Math. 9, 369–376 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brezinski, C.: Some determinantal identities in a vector space, with applications. In: Werner, H., Bunger, H. J. (eds.) Padé Approximation and its Applications, Bad-Honnef, 1983, Lecture Notes in Mathematics, vol. 1071, pp. 1-11. Springer, Berlin (1984)

  4. Brezinski, C.: Other manifestations of the Schur complement. Linear Algebra Appl. 111, 231–247 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cottle, R.W.: Manifestations of the Schur complement. Linear Algebra Appl. 8, 189–211 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gautschi, W.: Orthogonal polynomials computation and approximation. Oxford University Press (2004)

  7. Golub, G.H., Ortega, J.M.: Scientific computing and differential equations, an introduction to numerical methods, Academic Press (1992)

  8. Messaoudi, A.: Some properties of the recursive projection and interpolation algorithms. IMA J. Numer. Anal. 15, 307–318 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Messaoudi, A.: Recursive interpolation Algorithm : a forMalism for linear equations-I: Direct methods. J. Comp. Appl. Math. 76, 13–30 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Messaoudi, A.: Recursive interpolation Algorithm : a forMalism for linear equations-II: Iterative methods. J. Comp. Appl. Math. 76, 31–53 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ouellette, D.V.: Schur complements and statistics. Linear Algebra Appl. 36, 187–295 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Schur, I.: Potenzreihn im innern des einheitskreises. J. Reine. Angew. Math. 147, 205–232 (1917)

    MathSciNet  Google Scholar 

  13. Süli, E., Mayers, D.: An introduction to numerical analysis. Cambridge University Press (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Sadok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messaoudi, A., Sadok, H. Recursive polynomial interpolation algorithm (RPIA). Numer Algor 76, 675–694 (2017). https://doi.org/10.1007/s11075-017-0276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0276-2

Keywords