Abstract
Let x 0, x 1, ⋯ , x n be a set of n+1 distinct real numbers (i.e., x i ≠ x j for i ≠ j) and y 0, y 1, ⋯ , y n be given real numbers; we know that there exists a unique polynomial p n (x) of degree n such that p n (x i ) = y i for i = 0, 1, ⋯ , n; p n is the interpolation polynomial for the set {(x i , y i ), i = 0, 1, ⋯ , n}. The polynomial p n (x) can be computed by using the Lagrange method or the Newton method. This paper presents a new method for computing interpolation polynomials. We will reformulate the interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the recursive polynomial interpolation algorithm (RPIA). Some properties of this algorithm will be studied and some examples will also be given.
Similar content being viewed by others
References
Atteia, M., Pradel, M.: Eléments d’analyse numérique, CEPADUES-Editions (1990)
Brezinski, C.: Recursive interpolation, extrapolation and projection. J. Comput. Appl. Math. 9, 369–376 (1983)
Brezinski, C.: Some determinantal identities in a vector space, with applications. In: Werner, H., Bunger, H. J. (eds.) Padé Approximation and its Applications, Bad-Honnef, 1983, Lecture Notes in Mathematics, vol. 1071, pp. 1-11. Springer, Berlin (1984)
Brezinski, C.: Other manifestations of the Schur complement. Linear Algebra Appl. 111, 231–247 (1988)
Cottle, R.W.: Manifestations of the Schur complement. Linear Algebra Appl. 8, 189–211 (1974)
Gautschi, W.: Orthogonal polynomials computation and approximation. Oxford University Press (2004)
Golub, G.H., Ortega, J.M.: Scientific computing and differential equations, an introduction to numerical methods, Academic Press (1992)
Messaoudi, A.: Some properties of the recursive projection and interpolation algorithms. IMA J. Numer. Anal. 15, 307–318 (1995)
Messaoudi, A.: Recursive interpolation Algorithm : a forMalism for linear equations-I: Direct methods. J. Comp. Appl. Math. 76, 13–30 (1996)
Messaoudi, A.: Recursive interpolation Algorithm : a forMalism for linear equations-II: Iterative methods. J. Comp. Appl. Math. 76, 31–53 (1996)
Ouellette, D.V.: Schur complements and statistics. Linear Algebra Appl. 36, 187–295 (1981)
Schur, I.: Potenzreihn im innern des einheitskreises. J. Reine. Angew. Math. 147, 205–232 (1917)
Süli, E., Mayers, D.: An introduction to numerical analysis. Cambridge University Press (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Messaoudi, A., Sadok, H. Recursive polynomial interpolation algorithm (RPIA). Numer Algor 76, 675–694 (2017). https://doi.org/10.1007/s11075-017-0276-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0276-2