Abstract
In McMullen (2000) it was proven that copies of generalized Mandelbrot set are dense in the bifurcation locus for generic families of rational maps. We develop an algorithm to an effective computation of the location and size of these generalized Mandelbrot sets in parameter space. We illustrate the effectiveness of the algorithm by applying it to concrete families of rational and entire maps.
References
Carleson, L., Gamelin, T.W.: Complex dynamics. Universitext: Tracts in mathematics. Springer-Verlag, New York, NY (1993)
Campos, B., Garijo, A., Jarque, X., Vindel, P.: Newton’s method on Bring-Jerrard polynomials. Publ. Mat. 58(suppl.), 81–109 (2014)
Devaney, R.L.: Complex Dynamical Systems (Cincinnati, OH, 1994), volume 49, chapter Complex dynamics and entire functions. Amer. Math. Soc. Providence, RI, 181–206 (1994)
Douady, A., Hubbard, J.H.: Étude Dynamique Des Polynômes Complexes. Partie I volume 84 of Publications Mathématiques d’Orsay. Université de Paris-Sud, Orsay (1984)
Douady, A., Hubbard, J.H.: Étude Dynamique Des Polynômes Complexes. Partie II volume 85 of Publications Mathématiques d’Orsay. Université de Paris-Sud, Orsay (1985)
Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18(2), 287–343 (1985)
Fagella, N., Garijo, A.: The parameter planes of λ z m exp(z) for m2. Comm. Math. Phys. 273(3), 755–783 (2007)
Jovanovic, R., Tuba, M.: A visual analysis of calculation-paths of the Mandelbrot set. WSEAS Trans. Comput. 8(7), 1205–1214 (2009)
McMullen, C.T.: Complex dynamics and renormalization, volume 135 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1994)
McMullen, C.T.: The Mandelbrot set is universal. In: The Mandelbrot Set, Theme and Variations, volume 274 of London Math. Soc. Lecture Note Ser., pp. 1–17. Cambridge Univ. Press, Cambridge (2000)
Milnor, J.: Dynamics in one complex variable, volume 160 of Annals of Mathematics Studies, 3rd edn. Princeton University Press, Princeton, NJ (2006)
Mitchell, A.: Existence of the Mandelbrot set in the parameter planes of certain rational functions. ProQuest LLC, Ann Arbor, MI 2016. Thesis (Ph.D.) – The University of Wisconsin, Milwaukee
Lei, T.: The Mandelbrot set is universal volume 274 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Garijo, A., Jarque, X. & Villadelprat, J. An effective algorithm to compute Mandelbrot sets in parameter planes. Numer Algor 76, 555–571 (2017). https://doi.org/10.1007/s11075-017-0270-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-017-0270-8