An effective algorithm to compute Mandelbrot sets in parameter planes | Numerical Algorithms
Skip to main content

An effective algorithm to compute Mandelbrot sets in parameter planes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In McMullen (2000) it was proven that copies of generalized Mandelbrot set are dense in the bifurcation locus for generic families of rational maps. We develop an algorithm to an effective computation of the location and size of these generalized Mandelbrot sets in parameter space. We illustrate the effectiveness of the algorithm by applying it to concrete families of rational and entire maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Carleson, L., Gamelin, T.W.: Complex dynamics. Universitext: Tracts in mathematics. Springer-Verlag, New York, NY (1993)

  2. Campos, B., Garijo, A., Jarque, X., Vindel, P.: Newton’s method on Bring-Jerrard polynomials. Publ. Mat. 58(suppl.), 81–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Devaney, R.L.: Complex Dynamical Systems (Cincinnati, OH, 1994), volume 49, chapter Complex dynamics and entire functions. Amer. Math. Soc. Providence, RI, 181–206 (1994)

  4. Douady, A., Hubbard, J.H.: Étude Dynamique Des Polynômes Complexes. Partie I volume 84 of Publications Mathématiques d’Orsay. Université de Paris-Sud, Orsay (1984)

    Google Scholar 

  5. Douady, A., Hubbard, J.H.: Étude Dynamique Des Polynômes Complexes. Partie II volume 85 of Publications Mathématiques d’Orsay. Université de Paris-Sud, Orsay (1985)

    Google Scholar 

  6. Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (4) 18(2), 287–343 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fagella, N., Garijo, A.: The parameter planes of λ z m exp(z) for m2. Comm. Math. Phys. 273(3), 755–783 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jovanovic, R., Tuba, M.: A visual analysis of calculation-paths of the Mandelbrot set. WSEAS Trans. Comput. 8(7), 1205–1214 (2009)

    Google Scholar 

  9. McMullen, C.T.: Complex dynamics and renormalization, volume 135 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (1994)

    Google Scholar 

  10. McMullen, C.T.: The Mandelbrot set is universal. In: The Mandelbrot Set, Theme and Variations, volume 274 of London Math. Soc. Lecture Note Ser., pp. 1–17. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  11. Milnor, J.: Dynamics in one complex variable, volume 160 of Annals of Mathematics Studies, 3rd edn. Princeton University Press, Princeton, NJ (2006)

    Google Scholar 

  12. Mitchell, A.: Existence of the Mandelbrot set in the parameter planes of certain rational functions. ProQuest LLC, Ann Arbor, MI 2016. Thesis (Ph.D.) – The University of Wisconsin, Milwaukee

  13. Lei, T.: The Mandelbrot set is universal volume 274 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Jarque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garijo, A., Jarque, X. & Villadelprat, J. An effective algorithm to compute Mandelbrot sets in parameter planes. Numer Algor 76, 555–571 (2017). https://doi.org/10.1007/s11075-017-0270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0270-8

Keywords