Abstract
In this work, we propose a hybrid difference scheme for solving parameterized singularly perturbed delay differential problems. A unified error analysis framework for the proposed hybrid scheme is given that allows to conclude uniform convergence of \(\mathcal {O}(N^{-2}\ln ^{2} N)\) on Shishkin meshes and \(\mathcal {O}(N^{-2})\) on Bakhvalov meshes, where N is the number of mesh intervals in the domain. Numerical results are included to confirm the theoretical estimates.
Similar content being viewed by others
References
Amiraliyeva, I.G., Amiraliyev, G.M.: Uniform difference method for parameterized singularly perturbed delay differential equations. Numer. Algor. 52, 509–521 (2009)
Gurney, W.S.C., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies revisited. Nature 287, 17–21 (1980)
Mallet-Paret, J., Nussbaum, R.D.: A differential-delay equation arising in optics and physiology. SIAM J. Math. Anal. 20, 249–292 (1989)
Fowler, A.C.: Asymptotic methods for delay equations. J. Engrg. Math. 53, 271–290 (2005)
Chow, S.-N., Mallet-Paret, J.: Singularly perturbed delay-differential equations. In: Coupled nonlinear oscillators (Los Alamos, N. M., 1981), vol. 80 of North-Holland Math. Stud., North-Holland, Amsterdam, pp. 7–12 (1983)
Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems. World Scientific, Singapore (1996)
Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust computational techniques for boundary layers. Chapman & Hall/CRC, Boca Raton, Florida (2000)
Amiraliyev, G.M., Duru, H.: A note on a parameterized singular perturbation problem. J. Comput. Appl. Math. 182, 233–242 (2005)
Wang, Y., Chen, S., Wu, X.: A rational spectral collocation method for solving a class of parameterized singular perturbation problems. J. Comput. Appl. Math. 233, 2652–2660 (2010)
Xie, F., Wang, J., Zhang, W., Heb, M.: A novel method for a class of parameterized singularly perturbed boundary value problems. J. Comput. Appl. Math. 213, 258–267 (2008)
Cen, Z.: A second-order difference scheme for a parameterized singular perturbation problem. J. Comput. Appl. Math. 221, 174–182 (2008)
Amiraliyev, G.M., Erdogan, F.: A finite difference scheme for a class of singularly perturbed initial value problems for delay differential equations. Numerical Algorithms 52, 663–675 (2009)
Cen, Z.: A second-order finite difference scheme for a class of singularly perturbed delay differential equations. Int. J. Comput. Math. 87, 173–185 (2010)
Amiraliyev, v, Erdogan, F.: Uniform numerical method for singularly perturbed delay differential equations. Comput. Math. Appl. 53, 1251–1259 (2007)
Kumar, S.: Layer-adapted methods for quasilinear singularly perturbed delay differential problems. Appl. Math. Comput. 233, 214 – 221 (2014)
Linß, T.: Layer-adapted meshes for reaction-convection-diffusion problems, vol. 1985 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, ISBN 978-3-642-05133-3 (2010)
Kumar, S., Kumar, M.: Parameter-robust numerical method for a system of singularly perturbed initial value problems. Numer. Algor. 59, 185–195 (2012)
Kumar, S., Kumar, M.: Analysis of some numerical methods on layer adapted meshes for singularly perturbed quasilinear systems. Numer. Algor. 71, 39–150 (2016)
Stynes, M., Roos, H.-G.: The midpoint upwind scheme. Appl. Numer. Math. 23, 361–374 (1997). ISSN 0168-9274
Cen, Z., Xu, A., Le, A.: A second-order hybrid finite difference scheme for a system of singularly perturbed initial value problems. J. Comput. Appl. Math. 234, 3445–3457 (2010)
Clavero, C., Gracia, J.L.: High order methods for elliptic and time dependent reaction-diffusion singularly perturbed problems. Appl. Math. Comput. 168, 1109–1127 (2005)
Clavero, C., Gracia, J.L., Lisbona, F.: An almost third order finite difference scheme for singularly perturbed reaction-diffusion systems. J. Comput. Appl. Math. 234, 2501–2515 (2010)
Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic press, New York (1970)
de Boor, C.: Good approximation by splines with variable knots. In: Meir, A., Sharma, A. (eds.) Spline Functions and Approximation Theory, Proceedings of the Symposium held at the University of Alberta, Edmonton, May 29–June 1, 1972, Birkhauser, Basel (1973)
Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, 2nd edn. Springer-Verlag, Berlin (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kumar, S., Kumar, M. A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems. Numer Algor 76, 349–360 (2017). https://doi.org/10.1007/s11075-016-0258-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0258-9