A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems | Numerical Algorithms Skip to main content
Log in

A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we propose a hybrid difference scheme for solving parameterized singularly perturbed delay differential problems. A unified error analysis framework for the proposed hybrid scheme is given that allows to conclude uniform convergence of \(\mathcal {O}(N^{-2}\ln ^{2} N)\) on Shishkin meshes and \(\mathcal {O}(N^{-2})\) on Bakhvalov meshes, where N is the number of mesh intervals in the domain. Numerical results are included to confirm the theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiraliyeva, I.G., Amiraliyev, G.M.: Uniform difference method for parameterized singularly perturbed delay differential equations. Numer. Algor. 52, 509–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gurney, W.S.C., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies revisited. Nature 287, 17–21 (1980)

    Article  Google Scholar 

  3. Mallet-Paret, J., Nussbaum, R.D.: A differential-delay equation arising in optics and physiology. SIAM J. Math. Anal. 20, 249–292 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fowler, A.C.: Asymptotic methods for delay equations. J. Engrg. Math. 53, 271–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chow, S.-N., Mallet-Paret, J.: Singularly perturbed delay-differential equations. In: Coupled nonlinear oscillators (Los Alamos, N. M., 1981), vol. 80 of North-Holland Math. Stud., North-Holland, Amsterdam, pp. 7–12 (1983)

  6. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  7. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust computational techniques for boundary layers. Chapman & Hall/CRC, Boca Raton, Florida (2000)

    MATH  Google Scholar 

  8. Amiraliyev, G.M., Duru, H.: A note on a parameterized singular perturbation problem. J. Comput. Appl. Math. 182, 233–242 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, Y., Chen, S., Wu, X.: A rational spectral collocation method for solving a class of parameterized singular perturbation problems. J. Comput. Appl. Math. 233, 2652–2660 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xie, F., Wang, J., Zhang, W., Heb, M.: A novel method for a class of parameterized singularly perturbed boundary value problems. J. Comput. Appl. Math. 213, 258–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cen, Z.: A second-order difference scheme for a parameterized singular perturbation problem. J. Comput. Appl. Math. 221, 174–182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Amiraliyev, G.M., Erdogan, F.: A finite difference scheme for a class of singularly perturbed initial value problems for delay differential equations. Numerical Algorithms 52, 663–675 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cen, Z.: A second-order finite difference scheme for a class of singularly perturbed delay differential equations. Int. J. Comput. Math. 87, 173–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Amiraliyev, v, Erdogan, F.: Uniform numerical method for singularly perturbed delay differential equations. Comput. Math. Appl. 53, 1251–1259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar, S.: Layer-adapted methods for quasilinear singularly perturbed delay differential problems. Appl. Math. Comput. 233, 214 – 221 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Linß, T.: Layer-adapted meshes for reaction-convection-diffusion problems, vol. 1985 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, ISBN 978-3-642-05133-3 (2010)

  17. Kumar, S., Kumar, M.: Parameter-robust numerical method for a system of singularly perturbed initial value problems. Numer. Algor. 59, 185–195 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, S., Kumar, M.: Analysis of some numerical methods on layer adapted meshes for singularly perturbed quasilinear systems. Numer. Algor. 71, 39–150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stynes, M., Roos, H.-G.: The midpoint upwind scheme. Appl. Numer. Math. 23, 361–374 (1997). ISSN 0168-9274

    Article  MathSciNet  MATH  Google Scholar 

  20. Cen, Z., Xu, A., Le, A.: A second-order hybrid finite difference scheme for a system of singularly perturbed initial value problems. J. Comput. Appl. Math. 234, 3445–3457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Clavero, C., Gracia, J.L.: High order methods for elliptic and time dependent reaction-diffusion singularly perturbed problems. Appl. Math. Comput. 168, 1109–1127 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Clavero, C., Gracia, J.L., Lisbona, F.: An almost third order finite difference scheme for singularly perturbed reaction-diffusion systems. J. Comput. Appl. Math. 234, 2501–2515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic press, New York (1970)

    MATH  Google Scholar 

  24. de Boor, C.: Good approximation by splines with variable knots. In: Meir, A., Sharma, A. (eds.) Spline Functions and Approximation Theory, Proceedings of the Symposium held at the University of Alberta, Edmonton, May 29–June 1, 1972, Birkhauser, Basel (1973)

  25. Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, 2nd edn. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, M. A second order uniformly convergent numerical scheme for parameterized singularly perturbed delay differential problems. Numer Algor 76, 349–360 (2017). https://doi.org/10.1007/s11075-016-0258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0258-9

Keywords

Navigation