Abstract
Motivated by the Cadzow filtering in seismic data processing, this paper presents a fast SVD method for multilevel block Hankel matrices. A seismic data presented as a multidimensional array is first transformed into a two dimensional multilevel block Hankel (MBH) matrix. Then the Lanczos process is applied to reduce the MBH matrix into a bidiagonal or tridiagonal matrix. Finally, the SVD of the reduced matrix is computed using the twisted factorization method. To achieve high efficiency, we propose a novel fast MBH matrix-vector multiplication method for the Lanczos process. In comparison with existing fast Hankel matrix-vector multiplication methods, our method applies 1-D, instead of multidimensional, FFT and requires minimum storage. Moreover, a partial SVD is performed on the reduced matrix, since complete SVD is not required by the Caszow filtering. Our numerical experiments show that our fast MBH matrix-vector multiplication method significantly improves both the computational cost and storage requirement. Our fast MBH SVD algorithm is particularly efficient for large size multilevel block Hankel matrices.
Similar content being viewed by others
References
Barrowes, B.E., Teixeira, F.L., Kong, J.A.: Fast algorithm for matrix-vector multiply of asymmetric multilevel block-toeplitz matrices. IEEE Antennas Propag. Soc. Int. Symp. 4, 630–633 (2001)
Browne, K., Qiao, S., Wei, Y.: A lanczos bidiagonalization algorithm for hankel matrices. Linear Algebra Appl. 430, 1531–1543 (2009)
Barker, V.A., Blackford, L.S., Dongarra, J., Du Croz, J., Hammarling, S., Marinova, M., Wásniewski, J., Yalamov, P.: LAPACK95 Users’ Guide”, SIAM. Philadelphia, Pennsylvania (2001)
Broomhead, D., King, G.: Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 20(2), 217–236 (1986)
Cadzow, J.: Signal enhancement a composite property mapping algorithm. IEEE Trans. Acoust., Speech, Sig. Process. 36, 49–62 (1988)
Chan, R.H., Jin, X.: An Introduction to Iterative Toeplitz Solvers, 3rd edition, SIAM. Philadelphia, Pennsylvania (2007)
Chu, M.T., Funderlic, R.E., Plemmons, R.J.: Structured low rank approximation. Linear Algebra Appl. 366, 157–172 (2003)
Dhillon, I.S.: A new O(n 2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem,PhD thesis, University of California, Berkeley, CA (1997)
Falkovskiy, A., Floreani, E., Schlosser, G.: FX Cadzow / SSA random noise filter: frequency extension,2011 CSPG CSEG CWLS Convention, pp. 1–8 (2011)
Fernando, F.V.: On computing an eigenvector of a tridiagonal matrix. SIAM Matrix Anal. Appl. 18, 1013–1034 (1997)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edition. Johns Hopkins University Press, Baltimore, MD (2009)
Ghil, M., Allen, M., Dettinger, M., Ide, K., Kondrashov, D., Mann, M., Robertson, A., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: Advance spectral methods for climatic time series. Rev. Geophys. 40, 1–41 (2002)
Gao, J., Sacchi, M.D., Chen, X.: A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions. Geophysics 78(1), V21–V30 (2013)
Liberty, E., Woolfe, F., Martinsson, P.G., Rokhlin, V., Tygerts, M.: Randomized algorithms for the low-rank approximation of matrices. Proc. Natl. Acad. Sci. USA 104(51), 20167–20172 (2007)
Markovsky, I.: Low rank approximation: algorithms, implementation, applications. Springer (2012)
Oropeza, V.E., Sacchi, M.D.: A randomized SVD for Multichannel Singular Spectrum Analysis (MSSA) noise attenuation, JSEG Denver 2010 Annual Meeting, pp. 3539–3544 (2010)
Oropeza, V.E., Sacchi, M.D.: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76(3), 25–32 (2011)
Qiao, S., Liu, G., Xu, W.: Block lanczos tridiagonalization of complex symmetric matrices,Optics & Photonics 2005, International Society for Optics and Photonics, 591010-591010 (2005)
Sanliturk, K.Y., Cakar, O.: Noise elimination from measured frequency response functions. Mech. Syst. Signal Process. 19(3), 615–631 (2005)
Tsang, L., Ding, K.H., Shih, S.E., Kong, J.A.: Scattering of electromagnetic waves from dense distributions of spheroidal particles based on Monte Carlo simulations. J. Opt. Soc. Amer. A 15, 2660–2669 (1998)
Trickeett, S.: F-xy Cadzow noise suppression,CSPG CSEG CWLS Convention, pp. 303–306 (2008)
Trickeett, S., Burroughs, L.: Prestack rank-reduction-based noise suppression. CSEG Recorder 34, 3193–3196 (2009)
Trickeett, S., Burroughs, L., Milton, A., Walton, L., Dack, R: Rank-reduction-based trace interpolation, 81st Annual International Meeting, SEG,Expanded Abstracts, pp. 1989–1992 (2010)
Ulrych, T., Freire, S., Siston, P.: Eigenimage Processing of Seismic Sections. SEG Extended Abstr. 7, 1261 (1988)
van Loan, C.: Computational frameworks for the fast Fourier transform, SIAM. Pennsylvania, Philadelphia (1992)
Xu, W., Qiao, S.: A twisted factorization method for symmetric SVD of a complex symmetric tridiagonal matrix. Numer. Linear Algebra Appl. 16, 801–815 (2009)
Xu, W., Qiao, S.: A fast SVD algorithm for square hankel matrices. Linear Algebra Appl. 428, 550–563 (2008)
Zhang, H., Thurber, C.H.: Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization. Geophys. J. Int. 170, 337–345 (2007)
Zhang, L., Peng, W., Yuan, C.: An improved method for noise reduction based on singular value decomposition. Chin. J. Ship Res. 7(5), 83–88 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the Natural Science Foundation of China (Project No: 11101310) and Shanghai Key Laboratory of Contemporary Applied Mathematics of Fudan University.
Rights and permissions
About this article
Cite this article
Lu, L., Xu, W. & Qiao, S. A fast SVD for multilevel block Hankel matrices with minimal memory storage. Numer Algor 69, 875–891 (2015). https://doi.org/10.1007/s11075-014-9930-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-014-9930-0