Delay-dependent stability of symmetric boundary value methods for second order delay differential equations with three parameters | Numerical Algorithms Skip to main content
Log in

Delay-dependent stability of symmetric boundary value methods for second order delay differential equations with three parameters

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper aims at the delay-dependent stability analysis of symmetric boundary value methods, which include the Extended Trapezoidal Rules of the first kind and the second kind, the Top Order Methods and the B-spline linear multistep methods, for second order delay differential equations with three parameters. Theoretical analysis and numerical results are presented to show that the symmetric boundary value methods preserve the asymptotic stability of the true solutions of the test equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  2. Brugnano, L., Trigiante, D.: High order multistep methods for boundary value problems. Appl. Numer. Math. 18, 79–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brugnano, L., Trigiante, D.: Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66, 97–109 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brugnano, L., Trigiante, D.: Block boundary value methods for linear Hamiltonian systems. Appl. Math. Comput. 81, 49–68 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brugnano, L.: Essentially symplectic boundary value methods for linear Hamiltonian systems. J. Comput. Math. 15, 233–252 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Brugnano, L., Trigiante, D.: Boundary value methods: the third way between linear multistep and Runge-Kutta methods. Comput. Math. Appl. 36, 269–284 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam (1998)

    Google Scholar 

  8. Dekker, K., Verwer, J.: Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs 2. Amsterdam (1984)

  9. Diekmann, O., Van Gils, S.A., Verduyn Lunel, S.M., Walther, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis, pp. 305–311. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  10. Guglielmi, N.: On the asymptotic stability properties of Runge-Kutta methods for delay differential equations. Numer. Math. 77, 467–485 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guglielmi, N.: Delay dependent stability regions of 𝜃-methods for delay differential equations. IMA. J. Numer. Anal. 18, 399–418 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guglielmi, N., Hairer, E.: Order stars and stability for delay differential equations. Numer. Math. 83, 371–383 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guglielmi, N., Hairer, E.: Geometric proofs of numerical stability for delay equations. IMA. J. Numer. Anal. 21, 439–450 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guglielmi, N.: Asymptotic stability barriers for natural Runge-Kutta processes for delay equations. SIAM. J. Numer. Anal. 39, 763–783 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM. J. Sci. Comput. 25, 1608–1632 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, C.: Delay-dependent stability of high order Runge-Kutta methods. Numer. Math. 111, 377–387 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, W., Wu, S., Gan, S.: Delay-dependent stability of symmetric schemes in boundary value methods for DDEs. Appl. Math. Comput. 215, 2445–2455 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, W., Huang, C., Gan, S.: Delay-dependent stability analysis of trapezium rule for second order delay differential equations with three parameters. J. Franklin Inst. 347, 1437–1451 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Maset, S.: Stability of Runge-Kutta methods for linear delay differential equations. Numer. Math. 87, 355–371 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Maset, S.: Instability of Runge-Kutta methods when applied to linear systems of delay differential equations. Numer. Math. 90, 555–562 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mazzia, F., Sestini, A., Trigiante, D.: B-spline linear multistep methods and their continuous extensions. SIAM. J. Numer. Anal. 44, 1954–1973 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mazzia, F., Sestini, A., Trigiante, D.: BS linear multistep methods on non-uniform meshes. J. Numer. Anal. Indust. Appl. Math. 1, 131–144 (2006)

    MATH  MathSciNet  Google Scholar 

  23. Mazzia, F., Sestini, A., Trigiante, D.: The continuous extension of the B-spline linear multistep methods for BVPs on non-uniform meshes. Appl. Numer. Math. 59, 723–738 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mazzia, F., Sestini, A.: Quadrature formulas descending from BS Hermite spline quasi-interpolation. J. Comput. Appl. Math. 236, 4105–4118 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Minorsky, N.: Self-excited oscillations in dynamical systems possessing retarded actions. J. Appl. Mech. 9, A65–A71 (1942)

    Google Scholar 

  26. Zhang, C., Chen, H.: Block boundary value methods for delay differential equations. Appl. Numer. Math. 60, 915–923 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhao, J., Fan, Y., Xu, Y.: Delay–dependent stability analysis of symmetric boundary value methods for linear delay integro–differential equations. Numer. Algor. 65, 125–151 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xu.

Additional information

This work is supported by the National Natural Science Foundation of China (11101109, 11271102), the Natural Science Foundation of Hei-long-jiang Province (A201107), PIRS of HIT (A201405) and SRF for ROCS, SEM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Xu, Y., Li, X. et al. Delay-dependent stability of symmetric boundary value methods for second order delay differential equations with three parameters. Numer Algor 69, 321–336 (2015). https://doi.org/10.1007/s11075-014-9898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9898-9

Keywords

Mathematics Subject Classification (2010)