Computing high precision Matrix Padé approximants | Numerical Algorithms Skip to main content
Log in

Computing high precision Matrix Padé approximants

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe a new method of computing matrix Padé approximants of series with integer data in an efficient and fraction-free way, by controlling the growth of the size of intermediate coefficients. This algorithm is applied to compute high precision Padé approximants of matrix-valued generating functions of time series. As an illustration we show that we can successfully recover from noisy equidistant sampling data a joint damped signal of four antenna, even in the presence of background signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, G.A., Graves-Morris, P.R.: Padé approximants. Encyclopedia of Mathematics, 2nd edn. Cambridge University Press, New York (1995)

    Google Scholar 

  2. Bareiss, E.: Sylvester’s Identity and multistep integer-preserving Gaussian elimination. Math. Comput. 22, 565–578 (1968)

    MathSciNet  MATH  Google Scholar 

  3. Beckermann, B., Cabay, S., Labahn, G.: Fraction-free computation of matrix pade systems. In: Proceedings of ISSAC’97, Maui, pp. 125–132. ACM, New York (1997)

    Google Scholar 

  4. Beckermann, B., Labahn, G.: Numeric and symbolic computation of problems defined by structured linear systems. Reliab. Comput. 6, 365–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beckermann, B., Labahn, G.: Fraction-free computation of matrix rational interpolants and matrix GCD’s. SIAM J. Matrix Anal. Appl. 22, 114–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bessis, D., Perotti, L.: Universal analytic properties of noise: introducing the J-matrix formalism. J. Phys. A 42, 365202 (2009)

    Article  MathSciNet  Google Scholar 

  7. Brown, W., Traub, J.F.: On Euclid’s algorithm and the theory of subresultants. J. ACM 18, 505–514 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bultheel, A.: Recusive algorithms for the matrix Padé problem. Math. Comput. 35, 875–892 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Cabay, S., Kossowski, P.: Power Series reminder sequences and Padé fractions over an integral domain. J. Symbol. Comput. 10, 139–163 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Collins, G.: Subresultant and reduced polynomial remainder sequences. J. ACM 14, 128–142 (1967)

    Article  MATH  Google Scholar 

  11. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer algebra. Kluwer, Boston (1992)

    Book  MATH  Google Scholar 

  12. Kailath, T.: Linear Systems. Prentice Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  13. Wall, H.S.: Analytic Theory of Continued Fractions. Chelsea, Bronx (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Beckermann.

Additional information

Dedicated to Claude Brezinski on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckermann, B., Bessis, D., Perotti, L. et al. Computing high precision Matrix Padé approximants. Numer Algor 61, 189–208 (2012). https://doi.org/10.1007/s11075-012-9596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9596-4

Keywords

AMS 2000 Subject Classifications