Weighted compound integration rules with higher order convergence for all N | Numerical Algorithms
Skip to main content

Weighted compound integration rules with higher order convergence for all N

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Quasi-Monte Carlo integration rules, which are equal-weight sample averages of function values, have been popular for approximating multivariate integrals due to their superior convergence rate of order close to 1/N or better, compared to the order \(1/\sqrt{N}\) of simple Monte Carlo algorithms. For practical applications, it is desirable to be able to increase the total number of sampling points N one or several at a time until a desired accuracy is met, while keeping all existing evaluations. We show that although a convergence rate of order close to 1/N can be achieved for all values of N (e.g., by using a good lattice sequence), it is impossible to get better than order 1/N convergence for all values of N by adding equally-weighted sampling points in this manner. We then prove that a convergence of order N  − α for α > 1 can be achieved by weighting the sampling points, that is, by using a weighted compound integration rule. We apply our theory to lattice sequences and present some numerical results. The same theory also applies to digital sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, D.C. (1964)

    MATH  Google Scholar 

  2. Baldeaux, J., Dick, J., Leobacher, G., Nuyens, D., Pillichshammer, F.: Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. (2011, submitted)

  3. Boyle, P.P., Lai, T., Tan, K.S.: Pricing options using lattice rules. N. Amer. Actuarial J. 9(3), 50–76 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28(6), 2162–2188 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dick, J.: On the convergence rate of the component-by-component construction of good lattice rules. J. Complex. 20(4), 493–522 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  7. Dick, J., Pillichshammer, F., Waterhouse, B.J.: The construction of good extensible rank-1 lattices. Math. Comput. 77(264), 2345–2374 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Genz, A.: Numerical computation of multivariate normal probabilities. J. Comput. Graph Stat. 1, 141–149 (1992)

    Article  Google Scholar 

  9. Gill, S.H., Lemieux, C.: Searching for extensible Korobov rules. J. Complex. 23(4–6), 603–613 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen & Co. Ltd., London (1964)

    Book  MATH  Google Scholar 

  11. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  12. Hickernell, F.J.: Lattice rules: how well do they measure up? In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets, pp. 109–166. Springer, Berlin (1998)

    Chapter  Google Scholar 

  13. Hickernell, F.J., Hong, H.S., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2001)

    Article  MathSciNet  Google Scholar 

  14. Hickernell, F.J., Niederreiter, H.: The existence of good extensible rank-1 lattices. J. Complex. 19(3), 286–300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  17. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complex. 19, 301–320 (2003)

    Article  MATH  Google Scholar 

  18. Kuo, F.Y., Sloan, I.H.: Lifting the curse of dimensionality. Not. Am. Math. Soc. 52(11), 1320–1328 (2005)

    MATH  MathSciNet  Google Scholar 

  19. Niederreiter, H.: Application of diophantine approximations to numerical integration. In: Osgood, C.F. (ed.) Diophantine Approximation and its Applications, pp. 129–199. Academic, New York (1973)

    Google Scholar 

  20. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Regional Conference Series in Applied Mathematics, Number 63. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  21. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75(2), 903–920 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complex. 22(1), 4–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nuyens, D., Cools, R.: Higher order quasi-Monte Carlo methods: a comparison. AIP Conference Proceedings 1281, 553–557 (2010)

    Article  Google Scholar 

  24. Sobol′, I.M.: On quasi-Monte Carlo integrations. Math. Comput. Simul. 47(2), 103–112 (1998)

    Article  MathSciNet  Google Scholar 

  25. Sidi, A.: A new variable transformation for numerical integration. In: Brass, H., Hämmerlin, G. (eds.) Numerical integration. IV. Proceedings of the Fourth Conference held in Oberwolfach, 8–14 Nov 1992, pp. 359–373. Birkhäuser Verlag, Basel (1993)

    Google Scholar 

  26. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  27. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM J. Numer. Anal. 40(5), 1650–1665 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sugihara, M., Murota, K.: A note on Hasselgrove’s method for numerical integration. Math. Comput. 39(160), 549–554 (1982)

    MATH  MathSciNet  Google Scholar 

  29. Vandewoestyne, B., Cools, R.: On obtaining higher order convergence for smooth periodic functions. J. Complex. 24(3), 328–340 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vandewoestyne, B., Cools, R., Warnock, T.: On obtaining quadratic and cubic error convergence using weighted Kronecker-sequences. Comput. 80(1), 75–94 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Nuyens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickernell, F.J., Kritzer, P., Kuo, F.Y. et al. Weighted compound integration rules with higher order convergence for all N . Numer Algor 59, 161–183 (2012). https://doi.org/10.1007/s11075-011-9482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9482-5

Keywords