A high-order algorithm for multiple electromagnetic scattering in three dimensions | Numerical Algorithms Skip to main content
Log in

A high-order algorithm for multiple electromagnetic scattering in three dimensions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe a fully discrete high-order algorithm for simulating multiple scattering of electromagnetic waves in three dimensions by an ensemble of perfectly conducting scattering objects. A key component of our surface integral algorithm is high-order tangential approximation of the surface current on each obstacle in the ensemble. The high-order nature of the algorithm leads to relatively small numbers of unknowns, which allows us to use either a direct method or an iterative boundary decomposition method for simulations of multiple scattering. We demonstrate the algorithm using both of these techniques for near and well separated obstacles. Using a small computing cluster (with 20 processors), we simulate multiple scattering by up to 125 objects for frequencies in the resonance region, and by paired obstacles of diameter 20 to 30 times the incident wavelength. Many physically important problems, such as scattering by atmospheric aerosols or ice crystals, involve multiple scattering by ensembles of particles, each particle having its own distinct shape, but with all particles fitting a stochastic description with a small number of fixed parameters in local spherical coordinates. We demonstrate our algorithm for multiple scattering by ensembles of such unique particles, whose stochastic description corresponds to computer models of ice crystals and dust particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balabane, M.: Boundary decomposition for helmholtz and maxwell equations 1: dijoint sub-scatterers. Asymptot. Anal. 38, 1–10 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Bruning, J.H., Lo, Y.T.: Multiple scattering of EM waves by spheres part I—multipole expansions and ray-optical solutions. IEEE Antennas Propag. 19, 378–390 (1971)

    Article  Google Scholar 

  3. Bruning, J.H., Lo, Y.T.: Multiple scattering of EM waves by spheres part II—numerical and experimental results. IEEE Antennas Propag. 19, 391–400 (1971)

    Article  Google Scholar 

  4. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  5. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York (1998)

    MATH  Google Scholar 

  6. Dillenseger, J.-L., Guillaume, H., Patard, J.-J.: Spherical harmonics based intrasubject 3-D kidney modeling/registration technique applied on partial information. IEEE Trans. Biomed. Eng. 53, 2185–2193 (2006)

    Article  Google Scholar 

  7. Doicu, A., Wriedt, T., Eremin, Y.: Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources—Theory and Programs. Springer, New York (2006)

    MATH  Google Scholar 

  8. Dorn, O., Lesselier, D.: Level set methods for inverse scattering. Inverse Probl. 22, R67–R131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dorn, O., Lesselier, D.: Level set techniques for structural inversion in medical imaging. In: Suri, J.S., Farag, A. (eds.) Deformable Models: An Application in Biomaterials and Medical Imagery, pp. 61–90. Springer, New York (2007)

  10. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  11. Fuller, K.A., Kattawar, G.W.: Consumate solution to the problem of electromagnetic scattering by an ensemble of spheres. I: linear chains. Opt. Lett. 13, 90–92 (1998)

    Article  Google Scholar 

  12. Fuller, K.A., Kattawar, G.W.: Consumate solution to the problem of electromagnetic scattering by an ensemble of spheres. II: clusters of arbitrary configuration. Opt. Lett. 13, 1063–1065 (1998)

    Article  Google Scholar 

  13. Fuller, A., Mackowski, W.D.: Electromagnetic scattering by compound spherical particles. In: Mishchenko, M.I., Hovenier, W., Travis, L.D. (eds.) Light Scattering by Nonspherical Particles, pp. 225–272. Academic, London (2000)

    Google Scholar 

  14. Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ganesh, M., Hawkins, S.C.: A hybrid high-order algorithm for radar cross section computations. SIAM J. Sci. Comput. 29, 1217–1243 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ganesh, M., Hawkins S.C.: A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces. J. Comp. Phys. 29, 4543–4562 (2008)

    Article  MathSciNet  Google Scholar 

  18. Ganesh, M., Hawkins, S.C.: Simulation of acoustic scattering by multiple obstacles in three dimensions. ANZIAM 50, C31–C45 (2008)

    Article  MathSciNet  Google Scholar 

  19. Geuzaine, C., Bruno, O., Reitich, F.: On the \(\mathcal{O}\)(1) solution of multiple-scattering problems. IEEE Trans. Magn. 41, 1488–1491 (2005)

    Article  Google Scholar 

  20. Goldberg-Zimring, D., Talos, I., Bhagwat, J., Haker, S., Black, P.M., Zou, K.H.: Statistical validation of brain tumor shape approximation via spherical harmonics for image-guided neurosurgery. Acad. Radiol. 12, 459–466 (2005)

    Article  Google Scholar 

  21. Gurel, L., Chew, W.C.: On the connection of T matrices and integral equations. In: IEEE Antennas and Propagation Society Symposium Digest, pp. 1624–1625. IEEE, Piscataway (1991)

  22. Hellmers, J., Eremina, E., Wriedt, T.: Simulation of light scattering by biconcave Cassini ovals using the nullfield method with discrete sources. J. Opt. A Pure Appl. Opt 8, 1–9, (2006)

    Article  Google Scholar 

  23. Knott, E.F., Shaeffer, J.F., Tuley, M.T.: Radar Cross Section. SciTech, Canberra (2004)

    Google Scholar 

  24. Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  25. Martinsson, P.G.: Fast evaluation of electro-static interactions in multi-phase dielectric media. J. Comp. Phys. 205, 289–299 (2006)

    Article  MathSciNet  Google Scholar 

  26. Martinsson, P.G., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. J. Comp. Phys. 205, 1–23 (2006)

    Article  MathSciNet  Google Scholar 

  27. Melrose, R.B., Taylor, M.E.: Near peak scattering and the corrected kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mishchenko, M., Videen, G., Babenko, V., Khlebtsov, N., Wriedt, T.: T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J. Quant. Spectrosc. Radiat. Transfer 88, 357–406 (2004)

    Google Scholar 

  29. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  30. Mishchenko, M.I., Travis, L.D., Macke, A.: T-matrix method and its applications. In: Mishchenko, I.J., Hovenier, W., Travis, L.D. (eds.) Light Scattering by Nonspherical Particles, chapter 6, pp. 147–172. Academic, London (2000)

    Google Scholar 

  31. Mishchenko, M.I., Travis, L.D., Mackowski, D.W.: T-matrix computations of light scattering by nonspherical particles: a review. J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996)

    Article  Google Scholar 

  32. Nousiainen, T., McFarquhar, G.M.: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci. 61, 2229–2248 (2004)

    Article  Google Scholar 

  33. Rayleigh, L.: On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phila. Mag. 34, 481–502 (1892)

    Google Scholar 

  34. Schuster, G.: A hybrid BIE + Born seris modeling scheme: generalized born series. J. Acoust. Soc. Am. 7, 865–879 (1985)

    Article  MathSciNet  Google Scholar 

  35. Stout, B., Auger, J.-C., Lafait, J.: A transfer matrix approach to local field calculations in multiple-scattering problems. J. Mod. Opt. 49, 2129–2152 (2002)

    Article  MATH  Google Scholar 

  36. Tsang, L., Kong, J.A., Ding, K.: Scattering of Electromagnetic Waves: Theories and Applications. Wiley, New York (2000)

    Book  Google Scholar 

  37. Veihelmann, B., Nousiainen, T., Kahnert, M., van der Zande, W.J.: Light scattering by small feldspar particles simulated using the gaussian random sphere geometry. J. Quant. Spectrosc. Radiat. Transfer 100, 393–405 (2005)

    Article  Google Scholar 

  38. Wang, Y.M., Chew, W.C.: A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres. IEEE Trans. Antennas Propag. 41, 1633–1639 (1993)

    Article  Google Scholar 

  39. Waterman, P.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 805–812 (1965)

    Article  Google Scholar 

  40. Woo, A.C., Wang, H.T., Schuh, M.J., Sanders, M.L.: Benchmark radar targets for the validation of computational electromagnetics programs. IEEE Antennas Propag. Mag. 35, 84–89 (1993)

    Article  Google Scholar 

  41. Wriedt, T., Hellmers, J., Eremina, E., Schuh, R.: Light scattering by single erythrocite: comparison of different methods. J. Quant. Spectrosc. Radiat. Transfer 100, 444–456 (2006)

    Article  Google Scholar 

  42. Xu, Y.-L.: Electromagnetic scattering by an aggregate of spheres. J. Opt. Soc. Am. A 20(11), 2093–2105 (2003)

    Article  Google Scholar 

  43. Zacharopoulos, A.D., Arridge, S.R., Dorn, O., Kolehmainen, V., Sikora, J.: 3D shape reconstruction in optical tomography using spherical harmonics and BEM. J. Electromagn. Waves Appl. 20, 1827–1836 (2006)

    Article  Google Scholar 

  44. Zacharopoulos, A.D., Arridge, S.R., Dorn, O., Kolehmainen, V., Sikora, J.: Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method. Inverse Probl. 22, 1509–1532 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganesh.

Additional information

Support of the Australian Research Council is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesh, M., Hawkins, S.C. A high-order algorithm for multiple electromagnetic scattering in three dimensions. Numer Algor 50, 469–510 (2009). https://doi.org/10.1007/s11075-008-9238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9238-z

Keywords

Mathematics Subject Classifications (2000)

Navigation