Spectral transformations of measures supported on the unit circle and the Szegő transformation | Numerical Algorithms Skip to main content
Log in

Spectral transformations of measures supported on the unit circle and the Szegő transformation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we analyze spectral transformations of measures supported on the unit circle with real moments. The connection with spectral transformations of measures supported on the interval [−1,1] using the Szegő transformation is presented. Some numerical examples are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bueno, M.I., Marcellán, F.: Darboux transformations and perturbation of linear functionals. Linear Alg. Appl. 384, 215–242 (2004)

    Article  MATH  Google Scholar 

  2. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  3. Daruis, L., Hernández, J., Marcellán, F.: Spectral transformations for Hermitian Toeplitz matrices. J. Comput. Appl. Math. 202, 155–176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Garza, L., Hernández, J., Marcellán, F.: Orthogonal polynomials and measures on the unit circle. The Geronimus transformations. J. Comput. Appl. Math. (in press)

  5. Geronimus, Ya.L.: Polynomials orthogonal on a circle and their applications. Amer. Math. Soc. Transl. 1, 1–78, Providence, RI (1962)

    Google Scholar 

  6. Godoy, E., Marcellán, F.: Orthogonal polynomials and rational modification of measures. Canada J. Math. 45, 930–943 (1993)

    MATH  Google Scholar 

  7. Ismail, M.E.H., Li, X.: On sieved orthogonal polynomials IX: orthogonality on the unit circle, Pacific J. Math. 153, 289–297 (1992)

    MATH  MathSciNet  Google Scholar 

  8. Marcellán, F.: Polinomios ortogonales no estándar. Aplicaciones en análisis numérico y teoría de aproximación. Rev. Acad. Colomb. Ciencias Exactas, Físicas y Naturales, 29(117), 1–17 (2006) (in Spanish)

    Google Scholar 

  9. Marcellán, F., Hernández, J.: Geronimus spectral transforms and measures on the complex plane. J. Comput. Appl. Math. (in press)

  10. Marcellán, F., Hernández, J.: Christoffel transforms and Hermitian linear functionals. Mediterr. J. Math. 2, 451–458 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Marcellán, F., Sansigre, G.: Symmetrization, quadratic decomposition and cubic transformations of orthogonal polynomials on the unit circle. In: Brezinski, C. et al. (eds.) Proceedings Erice International Symposium on Orthogonal Polynomials and Their Applications. IMACS Annals on Comput. and Appl. Math. pp. 341–345 (1991)

  12. Peherstorfer, F.: A special class of polynomials orthogonal on the unit circle including the associated polynomials. Constr. Approx. 12, 161–185 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Simon, B.: Orthogonal polynomials on the unit circle, two volumes. Amer. Math. Soc. Colloq. Publ. Series, vol. 54, Amer. Math. Soc. Providence, RI (2005)

  14. Szegő, G.: Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. Series, vol. 23, Amer. Math. Soc., Providence, RI (1975)

  15. Zhedanov, A.: Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85, 67–83 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Marcellán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garza, L., Hernández, J. & Marcellán, F. Spectral transformations of measures supported on the unit circle and the Szegő transformation. Numer Algor 49, 169–185 (2008). https://doi.org/10.1007/s11075-008-9156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9156-0

Keywords

Mathematics Subject Classifications (2000)

Navigation