An image encryption scheme based on chaotic tent map | Nonlinear Dynamics Skip to main content
Log in

An image encryption scheme based on chaotic tent map

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Image encryption has been an attractive research field in recent years. The chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a novel image encryption scheme, which is based on the chaotic tent map. Image encryption systems based on such map show some better performances. Firstly, the chaotic tent map is modified to generate chaotic key stream that is more suitable for image encryption. Secondly, the chaos-based key stream is generated by a 1-D chaotic tent map, which has a better performance in terms of randomness properties and security level. The performance and security analysis of the proposed image encryption scheme is performed using well-known ways. The results of the fail-safe analysis are inspiring, and it can be concluded that the proposed scheme is efficient and secure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behnia, S., Akhavan, A., Akhshani, A., Samsudin, A.: Image encryption based on the Jacobian elliptic maps. J. Syst. Softw. 86(9), 2429–2438 (2013)

    Article  Google Scholar 

  2. Akhshani, A., Akhavan, A., Lim, S.-C., Hassan, Z.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Matthews, R.A.: The use of genetic algorithms in cryptanalysis. Cryptologia 17(2), 187–201 (1993)

    Article  Google Scholar 

  4. Ye, R., Guo, W.: A chaos-based image encryption scheme using multimodal skew tent maps. J. Emerg. Trends Comput. Inf. Sci. 4(10), (2013)

  5. Ye, R., Zhou, W.: A chaos-based image encryption scheme using 3D skew tent map and coupled map lattice. Int. J. Comput. Netw. Inf. Secur. 4(1), 25–28 (2012)

    MathSciNet  Google Scholar 

  6. Kanso, A.: Self-shrinking chaotic stream ciphers. Commun. Nonlinear Sci. Numer. Simul. 16(2), 822–836 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Akhavan, A., Samsudin, A., Akhshani, A.: A symmetric image encryption scheme based on combination of nonlinear chaotic maps. J. Frankl. Inst. 348(8), 1797–1813 (2011)

    Article  MathSciNet  Google Scholar 

  8. Jakimoski, G., Kocarev, L., et al.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(2), 163–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, L., Liao, X., Wang, X.: An image encryption approach based on chaotic maps. Chaos Solitons Fractals 24(3), 759–765 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, W., Wong, K.-W., Yu, H., Zhu, Z.-L.: An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2066–2080 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Latif, A.A.A., Li, L., Wang, N., Han, Q., Niu, X.: A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces. Signal Process. 93(11), 2986–3000 (2013)

    Article  Google Scholar 

  13. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(06), 1259–1284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lian, S., Sun, J., Wang, Z.: A block cipher based on a suitable use of the chaotic standard map. Chaos Solitons Fractals 26(1), 117–129 (2005)

    Article  MATH  Google Scholar 

  15. Masuda, N., Aihara, K.: Cryptosystems with discretized chaotic maps. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(1), 28–40 (2002)

    Article  MathSciNet  Google Scholar 

  16. Kocarev, L., Jakimoski, G., Stojanovski, T., Parlitz, U.: From chaotic maps to encryption schemes. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998. ISCAS’98, vol. 4, pp. 514–517. IEEE (1998)

  17. Bruce, S.: Applied Cryptography: Protocols, Algorithms, and Source Code in c. Wiley, New York (1996)

    MATH  Google Scholar 

  18. Hardjono, T., Dondeti, L.R., Perlman, R.: Multicast and Group Security. Artech House Inc., Norwood (2003)

    MATH  Google Scholar 

  19. Wong, K.-W., Kwok, B.S.-H., Law, W.-S.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372(15), 2645–2652 (2008)

    Article  MATH  Google Scholar 

  20. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mao, Y., Chen, G., Lian, S.: A novel fast image encryption scheme based on 3D chaotic baker maps. Int. J. Bifurc. Chaos 14(10), 3613–3624 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)

    Article  Google Scholar 

  23. Ye, R., Ma, Y.: A secure and robust image encryption scheme based on mixture of multiple generalized Bernoulli shift maps and Arnold maps. Int. J. Comput. Netw. Inf. Secur. 5(7), 21–33 (2013)

    Google Scholar 

  24. Tonner, R., Heydenrych, G., Frenking, G.: Statistical analysis of Bernoulli, logistic, and tent maps with applications to radar signal design. In: Defense and Security Symposium, pp. 62100G–62100G–10 (2006)

  25. Papamarkou, T., Lawrance, A. J.: Nonlinear dynamics of trajectories generated by fully-stretching piecewise linear maps. Int. J. Bifurc. Chaos 24(5), 1450071 (2014)

  26. Yoshida, T., Shigematsu, H., Mori, H.: Analytic study of chaos of the tent map: band structures, power spectra, and critical behaviors. J. Stat. Phys. 31(2), 279–308 (1983)

    Article  MathSciNet  Google Scholar 

  27. Kanso, A.: Self-shrinking chaotic stream ciphers. Commun. Nonlinear Sci. Numer. Simul. 16(2), 822–836. http://www.sciencedirect.com/science/article/pii/S1007570410002273 (2011)

  28. Smart, N., et al.: Ecrypt ii yearly report on algorithms and keysizes (2009–2010). Framework 2, 116 (2010)

  29. Behnia, S., Akhshani, A., Ahadpour, S., Mahmodi, H., Akhavan, A.: A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps. Phys. Lett. A 366(4), 391–396 (2007)

    Article  MATH  Google Scholar 

  30. Behnia, S., Akhshani, A., Mahmodi, H., Akhavan, A.: A novel algorithm for image encryption based on mixture of chaotic maps. Chaos Solitons Fractals 35(2), 408–419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Akhshani, A., Mahmodi, H., Akhavan, A.: A novel block cipher based on hierarchy of one-dimensional composition chaotic maps. In: 2006 IEEE International Conference on Image Processing, pp. 1993–1996. IEEE (2006)

  32. Shannon, C.E.: Communication theory of secrecy systems*. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the Foundation of Science and Technology Department of Sichuan province Nos. 2013JQ0005 and 2014JY0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Luo, G., Qin, K. et al. An image encryption scheme based on chaotic tent map. Nonlinear Dyn 87, 127–133 (2017). https://doi.org/10.1007/s11071-016-3030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3030-8

Keywords

Navigation