Robust Mittag-Leffler Synchronization for Uncertain Fractional-Order Discontinuous Neural Networks via Non-fragile Control Strategy | Neural Processing Letters Skip to main content

Advertisement

Log in

Robust Mittag-Leffler Synchronization for Uncertain Fractional-Order Discontinuous Neural Networks via Non-fragile Control Strategy

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper deals with the global robust non-fragile Mittag-Leffler synchronization issue for uncertain fractional-order neural networks with discontinuous activations. Firstly, a new inequality, which is concerned with the fractional derivative of the variable upper limit integral for the non-smooth integrable functional, is developed, and to be applied in the main results analysis. Then, the appropriate non-fragile controller with two types of gain perturbations is designed, and the global asymptotical stability is discussed for the synchronization error dynamical system by applying Lyapunov functional approach, non-smooth analysis theory and inequality analysis technique. In addition, the robust non-fragile Mittag-Leffler synchronization conditions are addressed in terms of linear matrix inequalities. Finally, two numerical examples are given to demonstrate the feasibility of the proposed non-fragile controller and the validity of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yang Y, Cao J (2008) A feedback neural networks for solving convex constraint optimization problems. Appl Math Comput 201:340–350

    MathSciNet  MATH  Google Scholar 

  2. Kaslik E, Sivasundaram S (2011) Impulsive hybrid discrete-time Hopfield neural networks with delays and multistability analysis. Neural Netw 24:370–377

    Article  Google Scholar 

  3. Liu Y, Wang Z, Liang J, Liu X (2009) Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Trans Neural Netw 20:1102–1116

    Article  Google Scholar 

  4. Cao J, Rakkiyappan R, Maheswari K, Chandrasekar A (2016) Exponential \(H_{\infty }\) filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci China Technol Sci 59:387–402

    Article  Google Scholar 

  5. Cao J, Wan Y (2014) Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw 53:165–172

    Article  Google Scholar 

  6. Soczkiewicz E (2002) Application of fractional calculus in the theory of viscoelasticity. Mol Quant Acoust 23:397–404

    Google Scholar 

  7. Hilfer R (2001) Applications of fractional calculus in physics. World Scientific, Hackensack

    MATH  Google Scholar 

  8. Chon K, Hoyer D, Armoundas A (1999) Robust nonlinear autoregressive moving average model parameter estimation using stochastic recurrent artificial neural networks. Ann Biomed Eng 27:538–547

    Article  Google Scholar 

  9. Huang X, Zhao Z, Wang Z, Li Y (2012) Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94:13–21

    Article  Google Scholar 

  10. Wu Z, Zou Y, Huang N (2016) A system of fractional-order interval projection neural network. J Comput Appl Math 294:389–402

    Article  MathSciNet  Google Scholar 

  11. Zhou S, Li H, Zhu Z (2008) Chaos control and synchronization in a fractional neuron network system. Chaos Solitons Fractals 36:973–984

    Article  MathSciNet  Google Scholar 

  12. Zhang S, Yu Y, Wang H (2015) Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal Hybrid Syst 16:104–121

    Article  MathSciNet  Google Scholar 

  13. Wu H, Zhang X, Xue S, Wang L, Wang Y (2016) LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses. Neurocomputing 193:148–154

    Article  Google Scholar 

  14. Zhang L, Song Q, Zhao Z (2017) Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays. Appl Math Comput 298:296–309

    MathSciNet  Google Scholar 

  15. Wang L, Song Q, Liu Y, Zhao Z, Alsaadi F (2017) Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with both leakage and time-varying delays. Neurocomputing 245:86–101

    Article  Google Scholar 

  16. Wang L, Song Q, Liu Y, Zhao Z, Alsaadi F (2017) Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay. Neurocomputing 243:49–59

    Article  Google Scholar 

  17. Ren F, Cao F, Cao J (2015) Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks. Neurocomputing 160:185–190

    Article  Google Scholar 

  18. Chen L, Wu R, Cao J, Liu J (2015) Stability and synchronization of memristor-based fractional-order delayed neural networks. Neural Netw 71:37–44

    Article  Google Scholar 

  19. Li R, Cao J, Alsaedi A, Alsaadi F (2017) Stability analysis of fractional-order delayed neural networks. Nonlinear Anal Model Control 22:505–520

    Article  MathSciNet  Google Scholar 

  20. Bao H, Park J, Cao J (2016) Synchronization of fractional-order delayed neural networks with hybrid coupling. Complexity 21:106–112

    Article  MathSciNet  Google Scholar 

  21. Rakkiyappan R, Cao J, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26:84–97

    Article  MathSciNet  Google Scholar 

  22. Zhang S, Yu Y, Wang Q (2016) Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions. Neurocomputing 171:1075–1084

    Article  Google Scholar 

  23. Ding Z, Shen Y, Wang L (2016) Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations. Neural Netw 73:77–85

    Article  Google Scholar 

  24. Zhang L, Yang Y, Wang F (2017) Synchronization analysis of fractional-order neural networks with time-varying delays via discontinuous neuron activations. Neurocomputing. ISSN: 0925-2312, https://doi.org/10.1016/j.neucom.2017.04.056

    Article  Google Scholar 

  25. Ding Z, Shen Y (2016) Global dissipativity of fractional-order neural networks with time delays and discontinuous activations. Neurocomputing 196:159–166

    Article  Google Scholar 

  26. Ding X, Cao J, Zhao X, Alsaadi F (2017) Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes. Proc R Soc A 473:20170322

    Article  MathSciNet  Google Scholar 

  27. Yang X, Li C, Huang T, Song Q, Chen X (2017) Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay. Neurocomputing 234:205–215

    Article  Google Scholar 

  28. Landsman A, Schwartz I (2007) Complete chaotic synchronization in mutually coupled time-delay systems. Phys Rev E 75:026201

    Article  Google Scholar 

  29. El-Dessoky M (2010) Anti-synchronization of four scroll attractor with fully unknown parameters. Nonlinear Anal Real World Appl 11:778–783

    Article  MathSciNet  Google Scholar 

  30. Zhan M, Wei G, Lai C (2002) Transition from intermittency to periodicity in lag synchronization in coupled Rossler oscillators. Phys Rev E 65:036202

    Article  Google Scholar 

  31. Molaei M, Umut O (2008) Generalized synchronization of nuclear spin generator system. Chaos Solitons Fractals 37:227–232

    Article  MathSciNet  Google Scholar 

  32. Rosenblum M, Pikovsky A, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76:1804–1807

    Article  Google Scholar 

  33. Yu J, Hu C, Jiang H, Fan X (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95

    Article  Google Scholar 

  34. Bao H, Cao J (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9

    Article  Google Scholar 

  35. Wu H, Wang L, Wang Y, Niu P, Fang B (2016) Global Mittag-Leffler projective synchronization for fractional-order neural networks: an LMI-based approach. Adv Differ Equ 132. 2016 https://doi.org/10.1186/s13662-016-0857-8

  36. Ding Z, Shen Y (2016) Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw 76:97–105

    Article  Google Scholar 

  37. Yang X, Cao J (2010) Finite-time stochastic synchronization of complex networks. Appl Math Model 34:3631–3641

    Article  MathSciNet  Google Scholar 

  38. Huang X, Lin W, Yang B (2005) Global finite-time synchronization of a class of uncertain nonlinear systems. Automatica 41:881–888

    Article  Google Scholar 

  39. Peng X, Wu H, Song K, Shi J (2017) Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays. Neural Netw 94:46–54

    Article  Google Scholar 

  40. Wu Z, Park J, Su H, Chu J (2013) Non-fragile synchronization control for complex networks with missing data. Int J Control 86:555–566

    Article  Google Scholar 

  41. Rakkiyappan R, Sasirekha R, Lakshmanan S, Lim C (2016) Synchronization of discrete-time Markovian jump complex dynamical networks with random delays via non-fragile control. J Frankl Inst 353:4300–4329

    Article  MathSciNet  Google Scholar 

  42. Yu Y, Dong H, Wang Z, Ren W, Alsaadi F (2016) Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties. Neurocomputing 182:18–24

    Article  Google Scholar 

  43. Fang M, Park J (2013) Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation. Appl Math Comput 219:8009–8017

    MathSciNet  MATH  Google Scholar 

  44. Anbuvithya R, Mathiyalagan K, Sakthivel R, Prakash P (2015) Non-fragile synchronization of memristive BAM networks with random feedback gain fluctuations. Commun Nonlinear Sci Numer Simul 29:427–440

    Article  MathSciNet  Google Scholar 

  45. Li R, Cao J, Alsaedi A, Hayat T (2017) Non-fragile state observation for delayed memristive neural networks: continuous-time case and discrete-time case. Neurocomputing 245:102–113

    Article  Google Scholar 

  46. Peng X, Wu H, Song K, Shi J (2018) Non-fragile chaotic synchronization for discontinuous neural networks with time-varying delays and random feedback gain uncertainties. Neurocomputing 273:89–100. https://doi.org/10.1016/j.neucom.2017.08.024

    Article  Google Scholar 

  47. Rajavel S, Samidurai R, Cao J, Alsaedi A, Ahmad B (2017) Finite-time non-fragile passivity control for neural networks with time-varying delay. Appl Math Comput 297:145C158

    MathSciNet  Google Scholar 

  48. Ding X, Cao J, Alsaedi A, Alsaadi F, Hayat T (2017) Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions. Neural Netw 90:42–55

    Article  Google Scholar 

  49. Wong W, Li H, Leung S (2012) Robust synchronization of fractional-order complex dynamical networks with parametric uncertainties. Commun Nonlinear Scie Numer Simul 17:4877–4890

    Article  MathSciNet  Google Scholar 

  50. Zheng C, Cao J (2014) Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by intermittent pinning control. Neurocomputing 141:153–159

    Article  Google Scholar 

  51. Wang L, Shen Y, Sheng Y (2016) Finite-time robust stabilization of uncertain delayed neural networks with discontinuous activations via delayed feedback control. Neural Netw 76:46–54

    Article  Google Scholar 

  52. Butzer P, Westphal U (2000) An introduction to fractional calculus. World Scientific, Singapore

    Book  Google Scholar 

  53. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam, p 204

    MATH  Google Scholar 

  54. Chen D, Zhang R, Liu X, Ma X (2014) Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Commun Nonlinear Sci Numer Simul 19:4105–4121

    Article  MathSciNet  Google Scholar 

  55. Forti M, Nistri P, Papini D (2005) Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans Neural Netw 16:1449–1463

    Article  Google Scholar 

  56. Filippov A (1988) Differential equations with discontinuous right-hand sides. Kluwer, Dordrecht

    Book  Google Scholar 

  57. Aubin J, Cellina A (1984) Differential inclusions. Spring, Berlin

    Book  Google Scholar 

  58. Boyd B, Ghoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Editors and Reviewers for their insightful and constructive comments, which help to enrich the content and improve the presentation of the results in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiqin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Wu, H. Robust Mittag-Leffler Synchronization for Uncertain Fractional-Order Discontinuous Neural Networks via Non-fragile Control Strategy. Neural Process Lett 48, 1521–1542 (2018). https://doi.org/10.1007/s11063-018-9787-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9787-7

Keywords

Navigation