Shoreline evolution: GIS, remote sensing and cellular automata modelling | Natural Computing
Skip to main content

Shoreline evolution: GIS, remote sensing and cellular automata modelling

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

The evolution and more particularly the erosion of the coasts morphology is an important environmental subject. Both the study of the actual evolution of coasts via digital tools and their modelling for the sake of prediction are necessary. A study of the evolution of a section of the Algerian coastline with a geographical information system shows that erosion is the main factor for the shoreline evolution, in the absence of structures consolidating the beaches. Therefore, a qualitative numerical model of the erosion of a coastline is proposed. It relies on a coupling between a cellular automata sedimentation model and a bi-fluid hydrodynamical model based on the Lattice Boltzmann method. The current model is two-dimensional and simulates a cross-section of a virtual coastline. The virtual coastline exhibits a gradual erosion by the water, whose speed depends on the kind of perturbation applied on the water level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472

    Article  MathSciNet  MATH  Google Scholar 

  • Avolio MV, Calidonna CR, Delle Rose M, Di Gregorio S, Lupiano V, Pagliara TM, Sempreviva AM (2012) A cellular automata model for soil erosion by water. In: Proceedings of ACRI 2012, Springer, Berlin, Heidelberg, vol LCNS 7495, pp 273–278

  • Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rep 222:145–197

    Article  Google Scholar 

  • Bhatnager P, Gross E, Krook M (1954) A model for collision process in gases. Phys Rev 94:511

    Article  Google Scholar 

  • Bordins P (2002) SIG: concepts, outils et données. Lavoisier, Cachan

    Google Scholar 

  • Calidonna CR, Di Gregorio S, Gullace F, Gull D, Lupiano V (2016) Rusica initial implementations: simulation results of sandy shore evolution in Porto Cesareo, Italy. In: AIP conference proceedings, vol 1738(1), pp 480103. doi:10.1063/1.4952339

  • Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  • Chopard B, Droz M (1998) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Chopard B, Luthi P, Masselot A, Dupuis A (2002) Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Adv Complex Syst 5–2:103–242

    Article  MathSciNet  MATH  Google Scholar 

  • Coulthard TJ, Hicks DM, Wiel MJVD (2007) Cellular modelling of river catchments and reaches: advantages, limitations and prospects. Geomorphology 90:192–207

    Article  Google Scholar 

  • Dagorne A (1970) Remarques préliminaires sur la sédimentation pré-littorale en baie de Bou-Ismail (Ouest Alger). Ann algériens de géographie 7:73–78

    Google Scholar 

  • D’Ambrosio D, Gregorio SD, Gabriele S, Gaudio R (2001) A cellular automata model for soil erosion by water. Phys Chem Earth Part B Hydrol Oceans Atmos 26(1):33–39

    Article  Google Scholar 

  • Dearing JA, Richmond N, Plater AJ, Wolf J, Prandle D, Coulthard TJ (2006) Modelling approaches for coastal simulation based on cellular automata: the need and potential. Phil Trans R Soc A 364:1051–1071

    Article  Google Scholar 

  • Ginzburg I (2005) Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv Water Resour 28(11):1171–1195

    Article  Google Scholar 

  • Ginzburg I (2007) Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection–diffusion equations. J Stat Phys 126–1:157–206

    Article  MathSciNet  MATH  Google Scholar 

  • Ginzburg I, Steiner K (2003) Lattice Boltzmann model for free-surface flow and its application to filling process in casting. J Comp Phys 185:61–99

    Article  MathSciNet  MATH  Google Scholar 

  • Hawick KA (2014) Modelling flood incursion and coastal erosion using cellular automata simulations. In: Proceedings of IASTED international conference on environmental management and engineering, IASTED, Banff, Canada, pp 1–8. URL http://www.hull.ac.uk/php/466990/csi/reports/0007/csi-0007.html

  • He X, Zou Q (1995) Analysis and boundary condition of the lattice Boltzmann BGK model with two velocities components. Los Alamos preprint, LA-UR-95-2293

  • Körner C, Pohl T, Rüde U, Thürey N, Hofmann T (2004) Lattice Boltzmann methods with free surfaces and their application in material technology. Technical report, Friedrich-Alexander-Universität Erlangen-Nürnberg—Institüt Fur Informatik (Mathematische Maschinen und Datenverarbeitung)

  • Körner C, Thies M, Hofmann T, Thürey N, Rüde U (2005) Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys 121(1–2):179–196

  • Lätt J (2007) Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva, Switzerland. URL http://www.unige.ch/cyberdocuments/theses2007/LattJ/meta.html

  • Lätt J, Chopard B, Malaspinas O, Deville M, Michler A (2008) Straight velocity boundaries in the lattice Boltzmann method. Phys Rev E 77:056703

    Article  Google Scholar 

  • Luo W (2001) Landsap: a coupled surface and subsurface cellular automata model for landform simulation. Comput Geosci 27:363–367

    Article  Google Scholar 

  • Marcou O, El Yacoubi S, Chopard B (2006) A bi-fluid lattice Boltzmann model for water flow in an irrigation channel. In: Proceedings of ACRI 2006, Springer, pp 373–382

  • Marcou O, Chopard B, El Yacoubi S (2007) Modeling of irrigation canals: a comparative study. Int J Mod Phys C 18(4):739–748

    Article  MATH  Google Scholar 

  • Marcou O, Chopard B, El Yacoubi S, Hamroun B, Lefèvre L, Mendes E (2010) A lattice Boltzmann model for the simulation of flows in open channels with applications to flows in a submerged sluice gate. J Irrig Drain Eng 136(12):809–822. URL https://hal.archives-ouvertes.fr/hal-00580892

  • Marcou O, Chopard B, El Yacoubi S, Hamroun B, Mendes E, Lefèvre L (2013) A lattice Boltzmann model to study sedimentation phenomena in irrigation canals. Commun Comput Phys 13:880–899

    Article  Google Scholar 

  • Mennad M (2008) Approche des systèmes d’information géographique (SIG) pour l’analyse spatio-temporelle de la pollution marine des eaux côtières. Application à la baie d’Alger. Ph.D. thesis, Université des Sciences et de la Technologie Houari Boumediène

  • Succi S (2001) The lattice Boltzmann equation, for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Sukop M, Thorne D (2005) Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Springer, Berlin

    Google Scholar 

  • Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Lecture notes in mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Yuan L (2008) A soil erosion model based on cellular automata. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B6b):21–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Marcou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seghir, A., Marcou, O. & El Yacoubi, S. Shoreline evolution: GIS, remote sensing and cellular automata modelling. Nat Comput 17, 569–583 (2018). https://doi.org/10.1007/s11047-017-9638-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-017-9638-x

Keywords